Package: hBayesDM (via r-universe)

October 13, 2024

Title Hierarchical Bayesian Modeling of Decision-Making Tasks

Version 1.3.0.9000 **Date** 2022-09-13

Author Woo-Young Ahn [aut, cre], Nate Haines [aut], Lei Zhang [aut], Harhim Park [ctb], Jaeyeong Yang [ctb], Jethro Lee [ctb]

Maintainer Woo-Young Ahn <wooyoung.ahn@gmail.com>

Description Fit an array of decision-making tasks with computational models in a hierarchical Bayesian framework. Can perform hierarchical Bayesian analysis of various computational models with a single line of coding (Ahn et al., 2017) <doi:10.1162/CPSY_a_00002>.

Depends R (>= 3.4.0), Rcpp (>= 0.12.0), methods

Imports rstan (>= 2.18.1), loo (>= 2.0), grid, parallel, ggplot2, data.table

LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0), rstan (>= 2.18.1), StanHeaders (>= 2.18.0)

URL https://github.com/CCS-Lab/hBayesDM

BugReports https://github.com/CCS-Lab/hBayesDM/issues

License GPL-3

NeedsCompilation yes

Encoding UTF-8

RoxygenNote 7.2.1

SystemRequirements GNU make

Collate 'HDIofMCMC.R' 'preprocess_funcs.R' 'stanmodels.R' 'settings.R'

'hBayesDM_model.R' 'alt_delta.R' 'alt_gamma.R'

'bandit2arm_delta.R' 'bandit4arm2_kalman_filter.R'

'bandit4arm_2par_lapse.R' 'bandit4arm_4par.R' 'bandit4arm_lapse.R' 'bandit4arm_lapse_decay.R'

'bandit4arm_singleA_lapse.R' 'banditNarm_2par_lapse.R'

'banditNarm_4par.R' 'banditNarm_delta.R'

2 Contents

'banditNarm_kalman_filter.R' 'banditNarm_lapse.R'
'banditNarm_lapse_decay.R' 'banditNarm_singleA_lapse.R'
'bart_ewmv.R' 'bart_par4.R' 'cgt_cm.R' 'choiceRT_ddm.R'
'choiceRT_ddm_single.R' 'choiceRT_lba.R'
'choiceRT_lba_single.R' 'cra_exp.R' 'cra_linear.R'
'dbdm_prob_weight.R' 'dd_cs.R' 'dd_cs_single.R' 'dd_exp.R'
$'dd_hyperbolic_R'\ 'dd_hyperbolic_single.R'\ 'estimate_mode.R'$
'extract_ic.R' 'gng_m1.R' 'gng_m2.R' 'gng_m3.R' 'gng_m4.R'
'hBayesDM.R' 'igt_orl.R' 'igt_pvl_decay.R' 'igt_pvl_delta.R'
'igt_vpp.R' 'multiplot.R' 'peer_ocu.R' 'plot.hBayesDM.R'
'plotDist.R' 'plotHDI.R' 'plotInd.R' 'printFit.R' 'prl_ewa.R'
'prl_fictitious.R' 'prl_fictitious_multipleB.R'
'prl_fictitious_rp_woa.R'
'prl_fictitious_woa.R' 'prl_rp.R' 'prl_rp_multipleB.R'
'pstRT_ddm.R' 'pstRT_rlddm1.R' 'pstRT_rlddm6.R' 'pst_Q.R'
'pst_gainloss_Q.R' 'ra_noLA.R' 'ra_noRA.R' 'ra_prospect.R'
'rdt_happiness.R' 'rhat.R' 'task2AFC_sdt.R' 'ts_par4.R'
'ts_par6.R' 'ts_par7.R' 'ug_bayes.R' 'ug_delta.R' 'wcs_sql.R'
'zzz.R'

Suggests testthat

Repository https://ccs-lab.r-universe.dev

RemoteUrl https://github.com/ccs-lab/hbayesdm

RemoteRef HEAD

RemoteSha d9e3d907b4af0a1960e2230a1712c59fa670f86b

Contents

alt_delta
alt_gamma
bandit2arm_delta
bandit4arm2_kalman_filter
bandit4arm_2par_lapse
bandit4arm_4par
bandit4arm_lapse
bandit4arm_lapse_decay
bandit4arm_singleA_lapse
banditNarm_2par_lapse
banditNarm_4par
banditNarm_delta
banditNarm_kalman_filter
banditNarm_lapse
banditNarm_lapse_decay
banditNarm_singleA_lapse
bart_ewmv
bart_par4
cgt cm

Contents 3

choiceRT_ddm									
choiceRT_ddm_single .									
cra_exp									
cra_linear									
dbdm_prob_weight	 	 	 	 	 				
dd_cs	 	 	 	 	 				
dd_cs_single	 	 	 	 	 			 	 . !
dd_exp	 	 	 	 	 			 	 . 9
dd_hyperbolic	 	 	 	 	 			 	 . •
dd_hyperbolic_single									
estimate mode									
extract_ic									
gng_m1									
gng_m2									
gng_m3									
gng_m4									
HDIofMCMC									
gt_orl									
gt_pvl_decay									
gt_pvl_delta									
gt_vpp									
multiplot	 	 	 	 	 				 . 1
peer_ocu	 	 	 	 	 			 	 . 1
olotDist	 	 	 	 	 			 	 . 1
olotHDI	 	 	 	 	 			 	 . 1
olotInd	 	 	 	 	 			 	 . 1
orintFit	 	 	 	 	 			 	 . 1
orl ewa									
orl_fictitious									
orl_fictitious_multipleB.									
prl_fictitious_rp									
prl_fictitious_rp_woa									
prl_fictitious_woa									
prl_rp									
prl_rp_multipleB									
pstRT_ddm									
pstRT_rlddm1									
pstRT_rlddm6									
pst_gainloss_Q	 	 	 	 	 				 . 1
pst_Q	 	 	 	 	 			 	 . 1
ra_noLA	 	 	 	 	 			 	 . 1
ra_noRA	 	 	 	 	 			 	 . 1
ra_prospect									
rdt_happiness									
rhat									
task2AFC_sdt									
ts_par4									
ts_par4 ts_par6									
18 0410	 	 		 	 				- 7

4 alt_delta

Index																										2	225
	wcs_sql	 •	•	•	•		•		•	•	•		•	•	•	 •	•	•	•	•	 	•	•			. 2	221
	ug_delta																										
	ug_bayes																				 					. 2	214
	ts_par7.																				 					. 2	210

alt_delta

Rescorla-Wagner (Delta) Model

Description

Hierarchical Bayesian Modeling of the Aversive Learning Task using Rescorla-Wagner (Delta) Model. It has the following parameters: A (learning rate), beta (inverse temperature), gamma (risk preference).

- Task: Aversive Learning Task (Browning et al., 2015)
- Model: Rescorla-Wagner (Delta) Model

Usage

```
alt_delta(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
 nchain = 4,
 ncore = 1,
 nthin = 1,
  inits = "vb",
  indPars = "mean",
 modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
 max_treedepth = 10,
)
```

Arguments

data

Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "sub-jID", "choice", "outcome", "bluePunish", "orangePunish". See **Details** below for more information.

niter

Number of iterations, including warm-up. Defaults to 4000.

alt_delta 5

nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every $i == nthin$ sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See $\textbf{Details}$ below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Aversive Learning Task, there should be 5 columns of data with the labels "subjID", "choice", "outcome", "bluePunish", "orangePunish". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on the given trial (blue == 1, orange == 2).

outcome Integer value representing the outcome of the given trial (punishment == 1, and non-punishment == 0).

bluePunish Floating point value representing the magnitude of punishment for blue on that trial (e.g., 10, 97)

orangePunish Floating point value representing the magnitude of punishment for orange on that trial (e.g., 23, 45)

6 alt_delta

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Lili Zhang <lili.zhang27@mail.dcu.ie>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"alt_delta").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Browning, M., Behrens, T. E., Jocham, G., O'reilly, J. X., & Bishop, S. J. (2015). Anxious individuals have difficulty learning the causal statistics of aversive environments. Nature neuroscience, 18(4), 590.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- alt_delta(</pre>
 data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- alt_delta(</pre>
 data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

alt_gamma

Rescorla-Wagner (Gamma) Model

Description

Hierarchical Bayesian Modeling of the Aversive Learning Task using Rescorla-Wagner (Gamma) Model. It has the following parameters: A (learning rate), beta (inverse temperature), gamma (risk preference).

- Task: Aversive Learning Task (Browning et al., 2015)
- Model: Rescorla-Wagner (Gamma) Model

Usage

```
alt_gamma(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
```

```
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...
)
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a
	tab-seperated txt file, "example" to use example data, or "choose" to choose
	data with an interactive window. Columns in the dataset must include: "sub-
	jID", "choice", "outcome", "bluePunish", "orangePunish". See Details below

for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.

Defaults to 1. A higher number can be used when auto-correlation within the

MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible

options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current

options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for

this model.

vb Use variational inference to approximately draw from a posterior distribution.

Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly

increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-

ple in the MCMC chain. Must be between 0 and 1. See **Details** below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler

can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take

on each new iteration. See Details below.

For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Aversive Learning Task, there should be 5 columns of data with the labels "subjID", "choice", "outcome", "bluePunish", "orangePunish". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on the given trial (blue == 1, orange == 2).

outcome Integer value representing the outcome of the given trial (punishment == 1, and non-punishment == 0).

bluePunish Floating point value representing the magnitude of punishment for blue on that trial (e.g., 10, 97)

orangePunish Floating point value representing the magnitude of punishment for orange on that trial (e.g., 23, 45)

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

```
Contributors: Lili Zhang <<li>lili.zhang27@mail.dcu.ie>>
```

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"alt_gamma").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Browning, M., Behrens, T. E., Jocham, G., O'reilly, J. X., & Bishop, S. J. (2015). Anxious individuals have difficulty learning the causal statistics of aversive environments. Nature neuroscience, 18(4), 590.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- alt_gamma(</pre>
 data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- alt_gamma(</pre>
 data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

bandit2arm_delta 11

bandit2arm_delta

Rescorla-Wagner (Delta) Model

Description

Hierarchical Bayesian Modeling of the 2-Armed Bandit Task using Rescorla-Wagner (Delta) Model. It has the following parameters: A (learning rate), tau (inverse temperature).

- Task: 2-Armed Bandit Task (Erev et al., 2010; Hertwig et al., 2004)
- Model: Rescorla-Wagner (Delta) Model

Usage

```
bandit2arm_delta(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
 modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
 max_treedepth = 10,
)
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "choice", "outcome". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.

12 bandit2arm_delta

inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: " y_pred "
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the 2-Armed Bandit Task, there should be 3 columns of data with the labels "subjID", "choice", "outcome". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on the given trial: 1 or 2.

outcome Integer value representing the outcome of the given trial (where reward == 1, and loss == -1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated

bandit2arm_delta 13

from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"bandit2arm_delta").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Erev, I., Ert, E., Roth, A. E., Haruvy, E., Herzog, S. M., Hau, R., et al. (2010). A choice prediction competition: Choices from experience and from description. Journal of Behavioral Decision Making, 23(1), 15-47. https://doi.org/10.1002/bdm.683

Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2004). Decisions From Experience and the Effect of Rare Events in Risky Choice. Psychological Science, 15(8), 534-539. https://doi.org/10.1111/j.0956-7976.2004.00715.x

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- bandit2arm_delta(</pre>
```

```
data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Run the model with example data
output <- bandit2arm_delta(
    data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

# Show the WAIC and LOOIC model fit estimates
printFit(output)

## End(Not run)</pre>
bandit4arm2_kalman_filter

Kalman Filter
```

Description

Hierarchical Bayesian Modeling of the 4-Armed Bandit Task (modified) using Kalman Filter. It has the following parameters: lambda (decay factor), theta (decay center), beta (inverse softmax temperature), mu0 (anticipated initial mean of all 4 options), s0 (anticipated initial sd (uncertainty factor) of all 4 options), sD (sd of diffusion noise).

- Task: 4-Armed Bandit Task (modified)
- Model: Kalman Filter (Daw et al., 2006)

Usage

```
bandit4arm2_kalman_filter(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
  modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
```

```
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...
)
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "choice", "outcome". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the 4-Armed Bandit Task (modified), there should be 3 columns of data with the labels "subjID", "choice", "outcome". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on the given trial: 1, 2, 3, or 4.

outcome Integer value representing the outcome of the given trial (where reward == 1, and loss == -1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Yoonseo Zoh <<zohyos7@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"bandit4arm2_kalman_filter").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user. modelRegressor List object containing the extracted model-based regressors.

References

Daw, N. D., O'Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441(7095), 876-879.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- bandit4arm2_kalman_filter(</pre>
 data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- bandit4arm2_kalman_filter(</pre>
 data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

bandit4arm_2par_lapse 3 Parameter Model, without C (choice perseveration), R (reward sensitivity), and P (punishment sensitivity). But with xi (noise)

Description

Hierarchical Bayesian Modeling of the 4-Armed Bandit Task using 3 Parameter Model, without C (choice perseveration), R (reward sensitivity), and P (punishment sensitivity). But with xi (noise). It has the following parameters: Arew (reward learning rate), Apun (punishment learning rate), xi (noise).

- Task: 4-Armed Bandit Task
- **Model**: 3 Parameter Model, without C (choice perseveration), R (reward sensitivity), and P (punishment sensitivity). But with xi (noise) (Aylward et al., 2018)

Usage

```
bandit4arm_2par_lapse(
 data = NULL,
 niter = 4000,
 nwarmup = 1000,
 nchain = 4,
 ncore = 1,
 nthin = 1,
  inits = "vb",
  indPars = "mean",
 modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
 max_treedepth = 10,
)
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "choice", "gain", "loss". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every $i == nthin$ sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.

inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the 4-Armed Bandit Task, there should be 4 columns of data with the labels "subjID", "choice", "gain", "loss". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on the given trial: 1, 2, 3, or 4.

gain Floating point value representing the amount of currency won on the given trial (e.g. 50, 100).

loss Floating point value representing the amount of currency lost on the given trial (e.g. 0, -50).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"bandit4arm_2par_lapse").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Aylward, Valton, Ahn, Bond, Dayan, Roiser, & Robinson (2018) Altered decision-making under uncertainty in unmedicated mood and anxiety disorders. PsyArxiv. 10.31234/osf.io/k5b8m

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- bandit4arm_2par_lapse(
   data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Run the model with example data
output <- bandit4arm_2par_lapse(
   data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)</pre>
```

bandit4arm_4par 21

```
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

bandit4arm_4par

4 Parameter Model, without C (choice perseveration)

Description

Hierarchical Bayesian Modeling of the 4-Armed Bandit Task using 4 Parameter Model, without C (choice perseveration). It has the following parameters: Arew (reward learning rate), Apun (punishment learning rate), R (reward sensitivity), P (punishment sensitivity).

- Task: 4-Armed Bandit Task
- Model: 4 Parameter Model, without C (choice perseveration) (Seymour et al., 2012)

Usage

```
bandit4arm_4par(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
  modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
  max_treedepth = 10,
)
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a
	tab-seperated txt file, "example" to use example data, or "choose" to choose
	data with an interactive window. Columns in the dataset must include: "subjID",
	"choice", "gain", "loss". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.

22 bandit4arm_4par

ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the 4-Armed Bandit Task, there should be 4 columns of data with the labels "subjID", "choice", "gain", "loss". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on the given trial: 1, 2, 3, or 4.

gain Floating point value representing the amount of currency won on the given trial (e.g. 50, 100). **loss** Floating point value representing the amount of currency lost on the given trial (e.g. 0, -50).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains

bandit4arm_4par 23

begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"bandit4arm 4par").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Seymour, Daw, Roiser, Dayan, & Dolan (2012). Serotonin Selectively Modulates Reward Value in Human Decision-Making. J Neuro, 32(17), 5833-5842.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
```

24 bandit4arm_lapse

```
output <- bandit4arm_4par(</pre>
   data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
 # Run the model with example data
 output <- bandit4arm_4par(</pre>
   data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
 # Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
 plot(output, type = "trace")
 # Check Rhat values (all Rhat values should be less than or equal to 1.1)
 rhat(output)
 # Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
 plot(output)
 # Show the WAIC and LOOIC model fit estimates
 printFit(output)
 ## End(Not run)
bandit4arm_lapse
                          5 Parameter Model, without C (choice perseveration) but with xi
                         (noise)
```

Description

Hierarchical Bayesian Modeling of the 4-Armed Bandit Task using 5 Parameter Model, without C (choice perseveration) but with xi (noise). It has the following parameters: Arew (reward learning rate), Apun (punishment learning rate), R (reward sensitivity), P (punishment sensitivity), xi (noise).

- Task: 4-Armed Bandit Task
- **Model**: 5 Parameter Model, without C (choice perseveration) but with xi (noise) (Seymour et al., 2012)

Usage

```
bandit4arm_lapse(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
  modelRegressor = FALSE,
  vb = FALSE,
```

bandit4arm_lapse 25

```
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...
)
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "choice", "gain", "loss". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every $i == nthin$ sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial

26 bandit4arm_lapse

observations and columns represent variables.

For the 4-Armed Bandit Task, there should be 4 columns of data with the labels "subjID", "choice", "gain", "loss". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on the given trial: 1, 2, 3, or 4.

gain Floating point value representing the amount of currency won on the given trial (e.g. 50, 100).

loss Floating point value representing the amount of currency lost on the given trial (e.g. 0, -50).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"bandit4arm_lapse").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user. modelRegressor List object containing the extracted model-based regressors.

References

Seymour, Daw, Roiser, Dayan, & Dolan (2012). Serotonin Selectively Modulates Reward Value in Human Decision-Making. J Neuro, 32(17), 5833-5842.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- bandit4arm_lapse(</pre>
 data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- bandit4arm_lapse(</pre>
 data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

bandit4arm_lapse_decay

5 Parameter Model, without C (choice perseveration) but with xi (noise). Added decay rate (Niv et al., 2015, J. Neuro).

Description

Hierarchical Bayesian Modeling of the 4-Armed Bandit Task using 5 Parameter Model, without C (choice perseveration) but with xi (noise). Added decay rate (Niv et al., 2015, J. Neuro). It has the following parameters: Arew (reward learning rate), Apun (punishment learning rate), R (reward sensitivity), P (punishment sensitivity), xi (noise), d (decay rate).

- Task: 4-Armed Bandit Task
- **Model**: 5 Parameter Model, without C (choice perseveration) but with xi (noise). Added decay rate (Niv et al., 2015, J. Neuro). (Aylward et al., 2018)

Usage

```
bandit4arm_lapse_decay(
 data = NULL,
 niter = 4000,
 nwarmup = 1000,
 nchain = 4,
 ncore = 1,
 nthin = 1,
  inits = "vb",
  indPars = "mean",
 modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
 max_treedepth = 10,
)
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "choice", "gain", "loss". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every $i == nthin$ sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.

inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the 4-Armed Bandit Task, there should be 4 columns of data with the labels "subjID", "choice", "gain", "loss". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on the given trial: 1, 2, 3, or 4.

gain Floating point value representing the amount of currency won on the given trial (e.g. 50, 100).

loss Floating point value representing the amount of currency lost on the given trial (e.g. 0, -50).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"bandit4arm_lapse_decay").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Aylward, Valton, Ahn, Bond, Dayan, Roiser, & Robinson (2018) Altered decision-making under uncertainty in unmedicated mood and anxiety disorders. PsyArxiv. 10.31234/osf.io/k5b8m

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- bandit4arm_lapse_decay(
    data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Run the model with example data
output <- bandit4arm_lapse_decay(
    data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)</pre>
```

```
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

bandit4arm_singleA_lapse

4 Parameter Model, without C (choice perseveration) but with xi (noise). Single learning rate both for R and P.

Description

Hierarchical Bayesian Modeling of the 4-Armed Bandit Task using 4 Parameter Model, without C (choice perseveration) but with xi (noise). Single learning rate both for R and P. It has the following parameters: A (learning rate), R (reward sensitivity), P (punishment sensitivity), xi (noise).

- Task: 4-Armed Bandit Task
- **Model**: 4 Parameter Model, without C (choice perseveration) but with xi (noise). Single learning rate both for R and P. (Aylward et al., 2018)

Usage

```
bandit4arm_singleA_lapse(
  data = NULL,
 niter = 4000,
 nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
 modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
 max_treedepth = 10,
)
```

Arguments

data

Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "choice", "gain", "loss". See **Details** below for more information.

niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: $"y_pred"$
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the 4-Armed Bandit Task, there should be 4 columns of data with the labels "subjID", "choice", "gain", "loss". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on the given trial: 1, 2, 3, or 4.

gain Floating point value representing the amount of currency won on the given trial (e.g. 50, 100). loss Floating point value representing the amount of currency lost on the given trial (e.g. 0, -50).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the

necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"bandit4arm_singleA_lapse").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Aylward, Valton, Ahn, Bond, Dayan, Roiser, & Robinson (2018) Altered decision-making under uncertainty in unmedicated mood and anxiety disorders. PsyArxiv. 10.31234/osf.io/k5b8m

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- bandit4arm_singleA_lapse(</pre>
 data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- bandit4arm_singleA_lapse(</pre>
 data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

banditNarm_2par_lapse 3 Parameter Model, without C (choice perseveration), R (reward sensitivity), and P (punishment sensitivity). But with xi (noise)

Description

Hierarchical Bayesian Modeling of the N-Armed Bandit Task using 3 Parameter Model, without C (choice perseveration), R (reward sensitivity), and P (punishment sensitivity). But with xi (noise). It has the following parameters: Arew (reward learning rate), Apun (punishment learning rate), xi (noise).

- Task: N-Armed Bandit Task
- **Model**: 3 Parameter Model, without C (choice perseveration), R (reward sensitivity), and P (punishment sensitivity). But with xi (noise) (Aylward et al., 2018)

Usage

```
banditNarm_2par_lapse(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
```

```
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...
)
```

Arguments

•	•	
	data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "choice", "gain", "loss". See Details below for more information.
	niter	Number of iterations, including warm-up. Defaults to 4000.
	nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
	nchain	Number of Markov chains to run. Defaults to 4.
	ncore	Number of CPUs to be used for running. Defaults to 1.
	nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
	inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
	indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
	modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
	vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
	inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
	adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
	stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
	max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
		For this model, it's possible to set model-specific argument(s) as follows:
		Narm Number of arms used in Multi-armed Bandit Task If not given, the num-

ber of unique choice will be used.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the N-Armed Bandit Task, there should be 4 columns of data with the labels "subjID", "choice", "gain", "loss". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on the given trial: 1, 2, 3, ... N.

gain Floating point value representing the amount of currency won on the given trial (e.g. 50, 100).

loss Floating point value representing the amount of currency lost on the given trial (e.g. 0, -50).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Cheol Jun Cho <<cjfwndnsl@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"banditNarm_2par_lapse").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Aylward, Valton, Ahn, Bond, Dayan, Roiser, & Robinson (2018) Altered decision-making under uncertainty in unmedicated mood and anxiety disorders. PsyArxiv. 10.31234/osf.io/k5b8m

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- banditNarm_2par_lapse(
    data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Run the model with example data
output <- banditNarm_2par_lapse(
    data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

# Show the WAIC and LOOIC model fit estimates
printFit(output)

## End(Not run)</pre>
```

38 banditNarm_4par

banditNarm_4par

4 Parameter Model, without C (choice perseveration)

Description

Hierarchical Bayesian Modeling of the N-Armed Bandit Task using 4 Parameter Model, without C (choice perseveration). It has the following parameters: Arew (reward learning rate), Apun (punishment learning rate), R (reward sensitivity), P (punishment sensitivity).

- Task: N-Armed Bandit Task
- Model: 4 Parameter Model, without C (choice perseveration) (Seymour et al., 2012)

Usage

```
banditNarm_4par(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
 modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
  max\_treedepth = 10,
)
```

Arguments

Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "choice", "gain", "loss". See Details below for more information.
Number of iterations, including warm-up. Defaults to 4000.
Number of iterations used for warm-up only. Defaults to 1000.
Number of Markov chains to run. Defaults to 4.
Number of CPUs to be used for running. Defaults to 1.
Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.

banditNarm_4par 39

inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, it's possible to set model-specific argument(s) as follows:
	Narm Number of arms used in Multi-armed Bandit Task If not given, the number of unique choice will be used.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the N-Armed Bandit Task, there should be 4 columns of data with the labels "subjID", "choice", "gain", "loss". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on the given trial: 1, 2, 3, ... N.

gain Floating point value representing the amount of currency won on the given trial (e.g. 50, 100).

loss Floating point value representing the amount of currency lost on the given trial (e.g. 0, -50).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument

40 banditNarm_4par

can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Cheol Jun Cho <<cjfwndnsl@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"banditNarm 4par").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Seymour, Daw, Roiser, Dayan, & Dolan (2012). Serotonin Selectively Modulates Reward Value in Human Decision-Making. J Neuro, 32(17), 5833-5842.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- banditNarm_4par(</pre>
  data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- banditNarm_4par(</pre>
  data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

banditNarm_delta

Rescorla-Wagner (Delta) Model

Description

Hierarchical Bayesian Modeling of the N-Armed Bandit Task using Rescorla-Wagner (Delta) Model. It has the following parameters: A (learning rate), tau (inverse temperature).

- Task: N-Armed Bandit Task (Erev et al., 2010; Hertwig et al., 2004)
- Model: Rescorla-Wagner (Delta) Model

Usage

```
banditNarm_delta(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
  modelRegressor = FALSE,
  vb = FALSE,
```

```
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...
)
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "choice", "gain", "loss". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every $i == nthin$ sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, it's possible to set model-specific argument(s) as follows:
	Narm Number of arms used in Multi-armed Bandit Task If not given, the number of unique choice will be used.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the N-Armed Bandit Task, there should be 4 columns of data with the labels "subjID", "choice", "gain", "loss". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on the given trial: 1, 2, 3, ... N.

gain Floating point value representing the amount of currency won on the given trial (e.g. 50, 100).

loss Floating point value representing the amount of currency lost on the given trial (e.g. 0, -50).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Cheol Jun Cho <<cjfwndnsl@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"banditNarm_delta").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Erev, I., Ert, E., Roth, A. E., Haruvy, E., Herzog, S. M., Hau, R., et al. (2010). A choice prediction competition: Choices from experience and from description. Journal of Behavioral Decision Making, 23(1), 15-47. https://doi.org/10.1002/bdm.683

Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2004). Decisions From Experience and the Effect of Rare Events in Risky Choice. Psychological Science, 15(8), 534-539. https://doi.org/10.1111/j.0956-7976.2004.00715.x

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- banditNarm_delta(
    data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Run the model with example data
output <- banditNarm_delta(
    data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

# Show the WAIC and LOOIC model fit estimates
printFit(output)

## End(Not run)</pre>
```

```
banditNarm_kalman_filter
```

Kalman Filter

Description

Hierarchical Bayesian Modeling of the N-Armed Bandit Task (modified) using Kalman Filter. It has the following parameters: lambda (decay factor), theta (decay center), beta (inverse softmax temperature), mu0 (anticipated initial mean of all 4 options), s0 (anticipated initial sd (uncertainty factor) of all 4 options), sD (sd of diffusion noise).

- Task: N-Armed Bandit Task (modified)
- Model: Kalman Filter (Daw et al., 2006)

Usage

```
banditNarm_kalman_filter(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
 nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
 modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
 max_treedepth = 10,
)
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "choice", "gain", "loss". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.

nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: " y_pred "
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, it's possible to set model-specific argument(s) as follows:
	Narm Number of arms used in Multi-armed Bandit Task If not given, the number of unique choice will be used.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the N-Armed Bandit Task (modified), there should be 4 columns of data with the labels "sub-jID", "choice", "gain", "loss". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on the given trial: 1, 2, 3, ... N.

gain Floating point value representing the amount of currency won on the given trial (e.g. 50, 100).

loss Floating point value representing the amount of currency lost on the given trial (e.g. 0, -50).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in

samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Yoonseo Zoh <<zohyos7@gmail.com>>, Cheol Jun Cho <<cjfwndnsl@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"banditNarm kalman filter").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Daw, N. D., O'Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441(7095), 876-879.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
 # Run the model with a given data.frame as df
 output <- banditNarm_kalman_filter(</pre>
   data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
 # Run the model with example data
 output <- banditNarm_kalman_filter(</pre>
   data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
 # Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
 plot(output, type = "trace")
 # Check Rhat values (all Rhat values should be less than or equal to 1.1)
 rhat(output)
 # Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
 plot(output)
 # Show the WAIC and LOOIC model fit estimates
 printFit(output)
 ## End(Not run)
banditNarm_lapse
                          5 Parameter Model, without C (choice perseveration) but with xi
                          (noise)
```

Description

Hierarchical Bayesian Modeling of the N-Armed Bandit Task using 5 Parameter Model, without C (choice perseveration) but with xi (noise). It has the following parameters: Arew (reward learning rate), Apun (punishment learning rate), R (reward sensitivity), P (punishment sensitivity), xi (noise).

- Task: N-Armed Bandit Task
- **Model**: 5 Parameter Model, without C (choice perseveration) but with xi (noise) (Seymour et al., 2012)

Usage

```
banditNarm_lapse(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
```

```
indPars = "mean",
  modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
  max_treedepth = 10,
  ...
)
```

Arguments

Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "choice", "gain", "loss". See **Details** below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.

Defaults to 1. A higher number can be used when auto-correlation within the

MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible

options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current

options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for

this model.

vb Use variational inference to approximately draw from a posterior distribution.

Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly

increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-

ple in the MCMC chain. Must be between 0 and 1. See **Details** below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler

can take on each new iteration. See Details below.

on each new iteration. See Details below.

For this model, it's possible to set **model-specific argument(s)** as follows:

Narm Number of arms used in Multi-armed Bandit Task If not given, the number of unique choice will be used.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the N-Armed Bandit Task, there should be 4 columns of data with the labels "subjID", "choice", "gain", "loss". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on the given trial: 1, 2, 3, ... N.

gain Floating point value representing the amount of currency won on the given trial (e.g. 50, 100).

loss Floating point value representing the amount of currency lost on the given trial (e.g. 0, -50).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Cheol Jun Cho <<cjfwndnsl@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"banditNarm_lapse").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Seymour, Daw, Roiser, Dayan, & Dolan (2012). Serotonin Selectively Modulates Reward Value in Human Decision-Making. J Neuro, 32(17), 5833-5842.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- banditNarm_lapse(
    data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Run the model with example data
output <- banditNarm_lapse(
    data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

# Show the WAIC and LOOIC model fit estimates
printFit(output)

## End(Not run)</pre>
```

```
banditNarm_lapse_decay
```

5 Parameter Model, without C (choice perseveration) but with xi (noise). Added decay rate (Niv et al., 2015, J. Neuro).

Description

Hierarchical Bayesian Modeling of the N-Armed Bandit Task using 5 Parameter Model, without C (choice perseveration) but with xi (noise). Added decay rate (Niv et al., 2015, J. Neuro). It has the following parameters: Arew (reward learning rate), Apun (punishment learning rate), R (reward sensitivity), P (punishment sensitivity), xi (noise), d (decay rate).

- Task: N-Armed Bandit Task
- **Model**: 5 Parameter Model, without C (choice perseveration) but with xi (noise). Added decay rate (Niv et al., 2015, J. Neuro). (Aylward et al., 2018)

Usage

```
banditNarm_lapse_decay(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
  modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
  max_treedepth = 10,
)
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "choice", "gain", "loss". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.

nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, it's possible to set model-specific argument(s) as follows:
	Narm Number of arms used in Multi-armed Bandit Task If not given, the number of unique choice will be used.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the N-Armed Bandit Task, there should be 4 columns of data with the labels "subjID", "choice", "gain", "loss". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on the given trial: 1, 2, 3, ... N.

gain Floating point value representing the amount of currency won on the given trial (e.g. 50, 100).

loss Floating point value representing the amount of currency lost on the given trial (e.g. 0, -50).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in

samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Cheol Jun Cho <<cjfwndnsl@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"banditNarm lapse decay").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Aylward, Valton, Ahn, Bond, Dayan, Roiser, & Robinson (2018) Altered decision-making under uncertainty in unmedicated mood and anxiety disorders. PsyArxiv. 10.31234/osf.io/k5b8m

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- banditNarm_lapse_decay(</pre>
 data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- banditNarm_lapse_decay(</pre>
 data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

banditNarm_singleA_lapse

4 Parameter Model, without C (choice perseveration) but with xi (noise). Single learning rate both for R and P.

Description

Hierarchical Bayesian Modeling of the N-Armed Bandit Task using 4 Parameter Model, without C (choice perseveration) but with xi (noise). Single learning rate both for R and P.. It has the following parameters: A (learning rate), R (reward sensitivity), P (punishment sensitivity), xi (noise).

- Task: N-Armed Bandit Task
- **Model**: 4 Parameter Model, without C (choice perseveration) but with xi (noise). Single learning rate both for R and P. (Aylward et al., 2018)

Usage

```
banditNarm_singleA_lapse(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
```

```
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...
)
```

Arguments

Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "choice", "gain", "loss". See **Details** below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.

Defaults to 1. A higher number can be used when auto-correlation within the

MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible

options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current

options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for

this model.

vb Use variational inference to approximately draw from a posterior distribution.

Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly

increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-

ple in the MCMC chain. Must be between 0 and 1. See **Details** below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler

can take on each new iteration. See **Details** below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take

on each new iteration. See Details below.

For this model, it's possible to set **model-specific argument(s)** as follows:

Narm Number of arms used in Multi-armed Bandit Task If not given, the number of unique choice will be used.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the N-Armed Bandit Task, there should be 4 columns of data with the labels "subjID", "choice", "gain", "loss". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on the given trial: 1, 2, 3, ... N.

gain Floating point value representing the amount of currency won on the given trial (e.g. 50, 100).

loss Floating point value representing the amount of currency lost on the given trial (e.g. 0, -50).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Cheol Jun Cho <<cjfwndnsl@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"banditNarm_singleA_lapse").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Aylward, Valton, Ahn, Bond, Dayan, Roiser, & Robinson (2018) Altered decision-making under uncertainty in unmedicated mood and anxiety disorders. PsyArxiv. 10.31234/osf.io/k5b8m

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- banditNarm_singleA_lapse(
    data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Run the model with example data
output <- banditNarm_singleA_lapse(
    data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

# Show the WAIC and LOOIC model fit estimates
printFit(output)

## End(Not run)</pre>
```

bart_ewmv 59

bart_ewmv

Exponential-Weight Mean-Variance Model

Description

Hierarchical Bayesian Modeling of the Balloon Analogue Risk Task using Exponential-Weight Mean-Variance Model. It has the following parameters: phi (prior belief of burst), eta (updating exponent), rho (risk preference), tau (inverse temperature), lambda (loss aversion).

- Task: Balloon Analogue Risk Task
- Model: Exponential-Weight Mean-Variance Model (Park et al., 2020)

Usage

```
bart_ewmv(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
 modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
  max\_treedepth = 10,
)
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "pumps", "explosion". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.

60 bart_ewmv

inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: " y_pred "
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Balloon Analogue Risk Task, there should be 3 columns of data with the labels "subjID", "pumps", "explosion". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

pumps The number of pumps.

explosion 0: intact, 1: burst

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated

bart_ewmv 61

from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Harhim Park <<hr/>hrpark12@gmail.com>>, Jaeyeong Yang <<jaeyeong.yang1125@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"bart_ewmv").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Park, H., Yang, J., Vassileva, J., & Ahn, W. (2020). The Exponential-Weight Mean-Variance Model: A novel computational model for the Balloon Analogue Risk Task. https://doi.org/10.31234/osf.io/sdzj4

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- bart_ewmv(
   data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data</pre>
```

62 bart_par4

```
output <- bart_ewmv(
   data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

# Show the WAIC and LOOIC model fit estimates
printFit(output)

## End(Not run)</pre>
```

bart_par4

Re-parameterized version of BART model with 4 parameters

Description

Hierarchical Bayesian Modeling of the Balloon Analogue Risk Task using Re-parameterized version of BART model with 4 parameters. It has the following parameters: phi (prior belief of balloon not bursting), eta (updating rate), gam (risk-taking parameter), tau (inverse temperature).

- Task: Balloon Analogue Risk Task
- **Model**: Re-parameterized version of BART model with 4 parameters (van Ravenzwaaij et al., 2011)

Usage

```
bart_par4(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
  modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
 max_treedepth = 10,
)
```

bart_par4 63

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a
	tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "pumps", "explosion". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Balloon Analogue Risk Task, there should be 3 columns of data with the labels "subjID", "pumps", "explosion". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

pumps The number of pumps.

64 bart_par4

explosion 0: intact, 1: burst

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Harhim Park <<hrpark12@gmail.com>>, Jaeyeong Yang <<jaeyeong.yang1125@gmail.com>>, Ayoung Lee <<aylee2008@naver.com>>, Jeongbin Oh <<ows0104@gmail.com>>, Jiyoon Lee <<nicole.lee2001@gmail.com>>, Junha Jang <<andy627robo@naver.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"bart par4").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

van Ravenzwaaij, D., Dutilh, G., & Wagenmakers, E. J. (2011). Cognitive model decomposition of the BART: Assessment and application. Journal of Mathematical Psychology, 55(1), 94-105.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- bart_par4(
    data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Run the model with example data
output <- bart_par4(
    data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

# Show the WAIC and LOOIC model fit estimates
printFit(output)

## End(Not run)</pre>
```

cgt_cm

Cumulative Model

Description

Hierarchical Bayesian Modeling of the Cambridge Gambling Task using Cumulative Model. It has the following parameters: alpha (probability distortion), c (color bias), rho (relative loss sensitivity), beta (discounting rate), gamma (choice sensitivity).

- Task: Cambridge Gambling Task (Rogers et al., 1999)
- Model: Cumulative Model

Usage

```
cgt_cm(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
  modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
  max\_treedepth = 10,
)
```

Arguments

Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "gamble_type", "percentage_staked", "trial_initial_points", "assessment_stage", "red_chosen", "n_red_boxes". See Details below for more information.
Number of iterations, including warm-up. Defaults to 4000.
Number of iterations used for warm-up only. Defaults to 1000.
Number of Markov chains to run. Defaults to 4.
Number of CPUs to be used for running. Defaults to 1.
Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
Whether to export model-based regressors (TRUE or FALSE). For this model they are: "y_hat_col", "y_hat_bet", "bet_utils".
Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. Not available for this model.
Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler

can take on each new iteration. See Details below.

max_treedepth
Integer value specifying how many leapfrog steps the MCMC sampler can take

on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Cambridge Gambling Task, there should be 7 columns of data with the labels "subjID", "gamble_type", "percentage_staked", "trial_initial_points", "assessment_stage", "red_chosen", "n_red_boxes". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

gamble_type Integer value representing whether the bets on the current trial were presented in descending (0) or ascending (1) order.

percentage_staked Integer value representing the bet percentage (not proportion) selected on the current trial: 5, 25, 50, 75, or 95.

trial_initial_points Floating point value representing the number of points that the subject has at the start of the current trial (e.g., 100, 150, etc.).

assessment_stage Integer value representing whether the current trial is a practice trial (0) or a test trial (1). Only test trials are used for model fitting.

red_chosen Integer value representing whether the red color was chosen (1) versus the blue color (0).

n_red_boxes Integer value representing the number of red boxes shown on the current trial: 1, 2, 3,..., or 9.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple

chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Nathaniel Haines << haines . 175@osu.edu>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"cgt_cm").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Rogers, R. D., Everitt, B. J., Baldacchino, A., Blackshaw, A. J., Swainson, R., Wynne, K., Baker, N. B., Hunter, J., Carthy, T., London, M., Deakin, J. F. W., Sahakian, B. J., Robbins, T. W. (1999). Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacology, 20, 322–339.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- cgt_cm(
  data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)</pre>
```

choiceRT_ddm 69

```
# Run the model with example data
output <- cgt_cm(
   data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

# Show the WAIC and LOOIC model fit estimates
printFit(output)

## End(Not run)</pre>
```

choiceRT_ddm

Drift Diffusion Model

Description

Hierarchical Bayesian Modeling of the Choice Reaction Time Task using Drift Diffusion Model. It has the following parameters: alpha (boundary separation), beta (bias), delta (drift rate), tau (non-decision time).

- Task: Choice Reaction Time Task
- Model: Drift Diffusion Model (Ratcliff, 1978)

Usage

```
choiceRT_ddm(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
  modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
 max\_treedepth = 10,
)
```

70 choiceRT_ddm

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "choice", "RT". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. Not available for this model.
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, it's possible to set model-specific argument(s) as follows:
	RTbound Floating point value representing the lower bound (i.e., minimum allowed) reaction time. Defaults to 0.1 (100 milliseconds).

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Choice Reaction Time Task, there should be 3 columns of data with the labels "subjID", "choice", "RT". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choiceRT_ddm 71

choice Choice made for the current trial, coded as 1/2 to indicate lower/upper boundary or left/right choices (e.g., 1 1 1 2 1 2).

RT Choice reaction time for the current trial, in **seconds** (e.g., 0.435 0.383 0.314 0.309, etc.).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"choiceRT_ddm").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59-108. https://doi.org/10.1037/0033-295X.85.2.59

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- choiceRT_ddm(</pre>
 data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- choiceRT_ddm(</pre>
 data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

Description

choiceRT_ddm_single

Individual Bayesian Modeling of the Choice Reaction Time Task using Drift Diffusion Model. It has the following parameters: alpha (boundary separation), beta (bias), delta (drift rate), tau (non-decision time).

Drift Diffusion Model

- Task: Choice Reaction Time Task
- Model: Drift Diffusion Model (Ratcliff, 1978)

Usage

```
choiceRT_ddm_single(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
```

choiceRT_ddm_single

```
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...
)
```

Arguments

da	ta	Data to b	be mode	led.	It sl	hould	be	given	as a	data.	frame	obje	ect,	a filepa	th for	a
		_	_			_				_	_				_	

tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID",

"choice", "RT". See **Details** below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.

Defaults to 1. A higher number can be used when auto-correlation within the

MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible

options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current

options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for

is model.

vb Use variational inference to approximately draw from a posterior distribution.

Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly

increase file size). Defaults to FALSE. Not available for this model.

adapt_delta Floating point value representing the target acceptance probability of a new sam-

ple in the MCMC chain. Must be between 0 and 1. See **Details** below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler

can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take

on each new iteration. See Details below.

... For this model, it's possible to set **model-specific argument(s)** as follows:

RTbound Floating point value representing the lower bound (i.e., minimum allowed) reaction time. Defaults to 0.1 (100 milliseconds).

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Choice Reaction Time Task, there should be 3 columns of data with the labels "subjID", "choice", "RT". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Choice made for the current trial, coded as 1/2 to indicate lower/upper boundary or left/right choices (e.g., 1 1 1 2 1 2).

RT Choice reaction time for the current trial, in **seconds** (e.g., 0.435 0.383 0.314 0.309, etc.).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Value

A class "hBayesDM" object modelData with the following components:

choiceRT_ddm_single 75

model Character value that is the name of the model (\code"choiceRT_ddm_single").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59-108. https://doi.org/10.1037/0033-295X.85.2.59

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- choiceRT_ddm_single(</pre>
 data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- choiceRT_ddm_single(</pre>
 data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

76 cra_exp

cra_exp

Exponential Subjective Value Model

Description

Hierarchical Bayesian Modeling of the Choice Under Risk and Ambiguity Task using Exponential Subjective Value Model. It has the following parameters: alpha (risk attitude), beta (ambiguity attitude), gamma (inverse temperature).

- Task: Choice Under Risk and Ambiguity Task
- Model: Exponential Subjective Value Model (Hsu et al., 2005)

Usage

```
cra_exp(
  data = NULL,
  niter = 4000,
 nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
 modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
 max\_treedepth = 10,
)
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a
	tab-seperated txt file, "example" to use example data, or "choose" to choose
	data with an interactive window. Columns in the dataset must include: "subjID",
	"prob", "ambig", "reward_var", "reward_fix", "choice". See Details below for
	more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every i == nthin sample will be used to generate the posterior distribution.
	Defaults to 1. A higher number can be used when auto-correlation within the
	MCMC sampling is high.

cra_exp 77

inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). For this model they are: "sv", "sv_fix", "sv_var", "p_var".
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Choice Under Risk and Ambiguity Task, there should be 6 columns of data with the labels "subjID", "prob", "ambig", "reward_var", "reward_fix", "choice". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

prob Objective probability of the variable lottery.

ambig Ambiguity level of the variable lottery (0 for risky lottery; greater than 0 for ambiguous lottery).

reward_var Amount of reward in variable lottery. Assumed to be greater than zero.

reward_fix Amount of reward in fixed lottery. Assumed to be greater than zero.

choice If the variable lottery was selected, choice == 1; otherwise choice == 0.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains

78 cra_exp

begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Jaeyeong Yang << jaeyeong.yang1125@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"cra_exp").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Hsu, M., Bhatt, M., Adolphs, R., Tranel, D., & Camerer, C. F. (2005). Neural systems responding to degrees of uncertainty in human decision-making. Science, 310(5754), 1680-1683. https://doi.org/10.1126/science.1115327

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM cra_linear 79

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- cra_exp(</pre>
 data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- cra_exp(</pre>
 data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

cra_linear

Linear Subjective Value Model

Description

Hierarchical Bayesian Modeling of the Choice Under Risk and Ambiguity Task using Linear Subjective Value Model. It has the following parameters: alpha (risk attitude), beta (ambiguity attitude), gamma (inverse temperature).

- Task: Choice Under Risk and Ambiguity Task
- Model: Linear Subjective Value Model (Levy et al., 2010)

Usage

```
cra_linear(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
  modelRegressor = FALSE,
```

80 cra_linear

```
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "prob", "ambig", "reward_var", "reward_fix", "choice". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every $i == nthin$ sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). For this model they are: "sv", "sv_fix", "sv_var", "p_var".
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for

cra linear 81

the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Choice Under Risk and Ambiguity Task, there should be 6 columns of data with the labels "subjID", "prob", "ambig", "reward_var", "reward_fix", "choice". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

prob Objective probability of the variable lottery.

ambig Ambiguity level of the variable lottery (0 for risky lottery; greater than 0 for ambiguous lottery).

reward_var Amount of reward in variable lottery. Assumed to be greater than zero.

reward_fix Amount of reward in fixed lottery. Assumed to be greater than zero.

choice If the variable lottery was selected, choice == 1; otherwise choice == 0.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Jaeyeong Yang << jaeyeong.yang1125@gmail.com>>

82 cra_linear

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"cra_linear").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Levy, I., Snell, J., Nelson, A. J., Rustichini, A., & Glimcher, P. W. (2010). Neural representation of subjective value under risk and ambiguity. Journal of Neurophysiology, 103(2), 1036-1047.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- cra_linear(
    data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Run the model with example data
output <- cra_linear(
    data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

# Show the WAIC and LOOIC model fit estimates
printFit(output)

## End(Not run)</pre>
```

dbdm_prob_weight 83

dbdm_prob_weight

Probability Weight Function

Description

Hierarchical Bayesian Modeling of the Description Based Decison Making Task using Probability Weight Function. It has the following parameters: tau (probability weight function), rho (subject utility function), lambda (loss aversion parameter), beta (inverse softmax temperature).

- Task: Description Based Decison Making Task
- **Model**: Probability Weight Function (Erev et al., 2010; Hertwig et al., 2004; Jessup et al., 2008)

Usage

```
dbdm_prob_weight(
  data = NULL,
 niter = 4000,
 nwarmup = 1000,
 nchain = 4,
 ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
 modelRegressor = FALSE,
 vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
 max_treedepth = 10,
)
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "sub-jID", "opt1hprob", "opt2hprob", "opt1hval", "opt1lval", "opt2hval", "opt2lval", "choice". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

84 dbdm_prob_weight

nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: " y_pred "
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See $\textbf{Details}$ below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Description Based Decison Making Task, there should be 8 columns of data with the labels "subjID", "opt1hprob", "opt2hprob", "opt1hval", "opt1lval", "opt2hval", "opt2lval", "choice". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

opt1hprob Possiblity of getting higher value of outcome(opt1hval) when choosing option 1.

opt2hprob Possiblity of getting higher value of outcome(opt2hval) when choosing option 2.

opt1hval Possible (with opt1hprob probability) outcome of option 1.

opt1lval Possible (with (1 - opt1hprob) probability) outcome of option 1.

opt2hval Possible (with opt2hprob probability) outcome of option 2.

opt2lval Possible (with (1 - opt2hprob) probability) outcome of option 2.

choice If option 1 was selected, choice == 1; else if option 2 was selected, choice == 2.

dbdm_prob_weight 85

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Yoonseo Zoh <<zohyos7@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"dbdm_prob_weight").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Erev, I., Ert, E., Roth, A. E., Haruvy, E., Herzog, S. M., Hau, R., ... & Lebiere, C. (2010). A choice prediction competition: Choices from experience and from description. Journal of Behavioral Decision Making, 23(1), 15-47.

Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2004). Decisions from experience and the effect of rare events in risky choice. Psychological science, 15(8), 534-539.

Jessup, R. K., Bishara, A. J., & Busemeyer, J. R. (2008). Feedback produces divergence from prospect theory in descriptive choice. Psychological Science, 19(10), 1015-1022.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- dbdm_prob_weight(</pre>
 data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- dbdm_prob_weight(</pre>
 data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

dd_cs

Constant-Sensitivity (CS) Model

Description

Hierarchical Bayesian Modeling of the Delay Discounting Task using Constant-Sensitivity (CS) Model. It has the following parameters: r (exponential discounting rate), s (impatience), beta (inverse temperature).

- Task: Delay Discounting Task
- Model: Constant-Sensitivity (CS) Model (Ebert et al., 2007)

Usage

```
dd_cs(
 data = NULL,
 niter = 4000,
 nwarmup = 1000,
 nchain = 4,
 ncore = 1,
 nthin = 1,
 inits = "vb",
 indPars = "mean",
 modelRegressor = FALSE,
 vb = FALSE,
 inc_postpred = FALSE,
 adapt_delta = 0.95,
 stepsize = 1,
 max_treedepth = 10,
)
```

Arguments

Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "delay_later", "amount_later", "delay_sooner", "amount_sooner", "choice". See Details below for more information.
Number of iterations, including warm-up. Defaults to 4000.
Number of iterations used for warm-up only. Defaults to 1000.
Number of Markov chains to run. Defaults to 4.
Number of CPUs to be used for running. Defaults to 1.
Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler

can take on each new iteration. See Details below.

on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Delay Discounting Task, there should be 6 columns of data with the labels "subjID", "delay_later", "amount_later", "delay_sooner", "amount_sooner", "choice". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

delay_later An integer representing the delayed days for the later option (e.g. 1, 6, 28).

amount_later A floating point number representing the amount for the later option (e.g. 10.5, 13.4, 30.9).

delay_sooner An integer representing the delayed days for the sooner option (e.g. 0).

amount_sooner A floating point number representing the amount for the sooner option (e.g. 10).

choice If amount_later was selected, choice == 1; else if amount_sooner was selected, choice ==
 0.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"dd_cs").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Ebert, J. E. J., & Prelec, D. (2007). The Fragility of Time: Time-Insensitivity and Valuation of the Near and Far Future. Management Science. https://doi.org/10.1287/mnsc.1060.0671

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- dd_cs(
    data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Run the model with example data
output <- dd_cs(
    data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)</pre>
```

90 dd_cs_single

```
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

dd_cs_single

Constant-Sensitivity (CS) Model

Description

Individual Bayesian Modeling of the Delay Discounting Task using Constant-Sensitivity (CS) Model. It has the following parameters: r (exponential discounting rate), s (impatience), beta (inverse temperature).

- Task: Delay Discounting Task
- Model: Constant-Sensitivity (CS) Model (Ebert et al., 2007)

Usage

```
dd_cs_single(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
 modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
 max_treedepth = 10,
)
```

Arguments

data

Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "delay_later", "amount_later", "delay_sooner", "amount_sooner", "choice". See **Details** below for more information.

niter

Number of iterations, including warm-up. Defaults to 4000.

nwarmup

Number of iterations used for warm-up only. Defaults to 1000.

dd_cs_single 91

nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every $i == nthin$ sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: " y_pred "
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Delay Discounting Task, there should be 6 columns of data with the labels "subjID", "delay_later", "amount_later", "delay_sooner", "amount_sooner", "choice". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

delay_later An integer representing the delayed days for the later option (e.g. 1, 6, 28).

amount_later A floating point number representing the amount for the later option (e.g. 10.5, 13.4, 30.9).

delay_sooner An integer representing the delayed days for the sooner option (e.g. 0).

amount_sooner A floating point number representing the amount for the sooner option (e.g. 10).

choice If amount_later was selected, choice == 1; else if amount_sooner was selected, choice ==
 0.

92 dd_cs_single

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"dd cs single").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Ebert, J. E. J., & Prelec, D. (2007). The Fragility of Time: Time-Insensitivity and Valuation of the Near and Far Future. Management Science. https://doi.org/10.1287/mnsc.1060.0671

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- dd_cs_single(</pre>
 data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- dd_cs_single(</pre>
 data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

dd_exp

Exponential Model

Description

Hierarchical Bayesian Modeling of the Delay Discounting Task using Exponential Model. It has the following parameters: r (exponential discounting rate), beta (inverse temperature).

- Task: Delay Discounting Task
- Model: Exponential Model (Samuelson, 1937)

Usage

```
dd_exp(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
```

```
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...
)
```

Arguments

Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "delay_later", "amount_later", "delay_sooner", "amount_sooner", "choice". See

Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.

Defaults to 1. A higher number can be used when auto-correlation within the

MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible

options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current

options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for

this model.

vb Use variational inference to approximately draw from a posterior distribution.

Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly

increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-

ple in the MCMC chain. Must be between 0 and 1. See **Details** below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler

can take on each new iteration. See Details below.

on each new iteration. See Details below.

For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Delay Discounting Task, there should be 6 columns of data with the labels "subjID", "delay_later", "amount_later", "delay_sooner", "amount_sooner", "choice". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

delay later An integer representing the delayed days for the later option (e.g. 1, 6, 28).

amount_later A floating point number representing the amount for the later option (e.g. 10.5, 13.4, 30.9).

delay_sooner An integer representing the delayed days for the sooner option (e.g. 0).

amount_sooner A floating point number representing the amount for the sooner option (e.g. 10). **choice** If amount_later was selected, choice == 1; else if amount_sooner was selected, choice == 0

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"dd_exp").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Samuelson, P. A. (1937). A Note on Measurement of Utility. The Review of Economic Studies, 4(2), 155. https://doi.org/10.2307/2967612

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- dd_exp(
    data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Run the model with example data
output <- dd_exp(
    data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

# Show the WAIC and LOOIC model fit estimates
printFit(output)

## End(Not run)</pre>
```

dd_hyperbolic 97

dd_hyperbolic

Hyperbolic Model

Description

Hierarchical Bayesian Modeling of the Delay Discounting Task using Hyperbolic Model. It has the following parameters: k (discounting rate), beta (inverse temperature).

- Task: Delay Discounting Task
- Model: Hyperbolic Model (Mazur, 1987)

Usage

```
dd_hyperbolic(
  data = NULL,
  niter = 4000,
 nwarmup = 1000,
 nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
 modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
 max\_treedepth = 10,
)
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "delay_later", "amount_later", "delay_sooner", "amount_sooner", "choice". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.

98 dd_hyperbolic

inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Delay Discounting Task, there should be 6 columns of data with the labels "subjID", "de-lay_later", "amount_later", "delay_sooner", "amount_sooner", "choice". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

delay_later An integer representing the delayed days for the later option (e.g. 1, 6, 28).

amount_later A floating point number representing the amount for the later option (e.g. 10.5, 13.4, 30.9).

delay_sooner An integer representing the delayed days for the sooner option (e.g. 0).

amount_sooner A floating point number representing the amount for the sooner option (e.g. 10).

choice If amount_later was selected, choice == 1; else if amount_sooner was selected, choice == 0.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in

dd_hyperbolic 99

samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"dd_hyperbolic").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Mazur, J. E. (1987). An adjustment procedure for studying delayed reinforcement.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
```

```
output <- dd_hyperbolic(
    data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Run the model with example data
output <- dd_hyperbolic(
    data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

# Show the WAIC and LOOIC model fit estimates
printFit(output)

## End(Not run)</pre>
```

dd_hyperbolic_single Hyperbolic Model

Description

Individual Bayesian Modeling of the Delay Discounting Task using Hyperbolic Model. It has the following parameters: k (discounting rate), beta (inverse temperature).

- Task: Delay Discounting Task
- Model: Hyperbolic Model (Mazur, 1987)

Usage

```
dd_hyperbolic_single(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
  modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
```

dd_hyperbolic_single 101

```
max_treedepth = 10,
    ...
)
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "delay_later", "amount_later", "delay_sooner", "amount_sooner", "choice". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every $i == nthin$ sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Delay Discounting Task, there should be 6 columns of data with the labels "subjID", "delay_later", "amount_later", "delay_sooner", "amount_sooner", "choice". It is not necessary for the

columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

delay_later An integer representing the delayed days for the later option (e.g. 1, 6, 28).

amount_later A floating point number representing the amount for the later option (e.g. 10.5, 13.4, 30.9).

delay_sooner An integer representing the delayed days for the sooner option (e.g. 0).

amount_sooner A floating point number representing the amount for the sooner option (e.g. 10).

choice If amount_later was selected, choice == 1; else if amount_sooner was selected, choice ==
0.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"dd_hyperbolic_single").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

estimate_mode 103

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Mazur, J. E. (1987). An adjustment procedure for studying delayed reinforcement.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- dd_hyperbolic_single(</pre>
 data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- dd_hyperbolic_single(</pre>
 data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

estimate_mode

Function to estimate mode of MCMC samples

Description

Based on codes from 'http://stackoverflow.com/questions/2547402/is-there-a-built-in-function-for-finding-the-mode' see the comment by Rasmus Baath

104 extract_ic

Usage

```
estimate_mode(x)
```

Arguments

Х

MCMC samples or some numeric or array values.

extract_ic

Extract Model Comparison Estimates

Description

Extract Model Comparison Estimates

Usage

```
extract_ic(model_data = NULL, ic = "looic", ncore = 2)
```

Arguments

model_data Object returned by 'hBayesDM' model function ic Information Criterion. 'looic', 'waic', or 'both' ncore Number of cores to use when computing LOOIC

Value

IC Leave-One-Out and/or Watanabe-Akaike information criterion estimates.

Examples

```
## Not run:
library(hBayesDM)
output = bandit2arm_delta("example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 1)
# To show the LOOIC model fit estimates (a detailed report; c)
extract_ic(output)
# To show the WAIC model fit estimates
extract_ic(output, ic = "waic")
## End(Not run)
```

gng_m1 105

 gng_m1 RW + noise

Description

Hierarchical Bayesian Modeling of the Orthogonalized Go/Nogo Task using RW + noise. It has the following parameters: xi (noise), ep (learning rate), rho (effective size).

- Task: Orthogonalized Go/Nogo Task
- Model: RW + noise (Guitart-Masip et al., 2012)

Usage

```
gng_m1(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
 modelRegressor = FALSE,
 vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
 max_treedepth = 10,
)
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "cue", "keyPressed", "outcome". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.

106 gng_m1

inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). For this model they are: "Qgo", "Qnogo", "Wgo", "Wnogo".
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: " y_pred "
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Orthogonalized Go/Nogo Task, there should be 4 columns of data with the labels "subjID", "cue", "keyPressed", "outcome". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

cue Nominal integer representing the cue shown for that trial: 1, 2, 3, or 4.

keyPressed Binary value representing the subject's response for that trial (where Press == 1; No press == 0).

outcome Ternary value representing the outcome of that trial (where Positive feedback == 1; Neutral feedback == 0; Negative feedback == -1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

gng_m1 107

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"gng_m1").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Guitart-Masip, M., Huys, Q. J. M., Fuentemilla, L., Dayan, P., Duzel, E., & Dolan, R. J. (2012). Go and no-go learning in reward and punishment: Interactions between affect and effect. Neuroimage, 62(1), 154-166. https://doi.org/10.1016/j.neuroimage.2012.04.024

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- gng_m1(
   data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)</pre>
```

108 gng_m2

```
# Run the model with example data
output <- gng_m1(
    data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

# Show the WAIC and LOOIC model fit estimates
printFit(output)

## End(Not run)</pre>

RW + noise + bias
```

Description

Hierarchical Bayesian Modeling of the Orthogonalized Go/Nogo Task using RW + noise + bias. It has the following parameters: xi (noise), ep (learning rate), b (action bias), rho (effective size).

- Task: Orthogonalized Go/Nogo Task
- Model: RW + noise + bias (Guitart-Masip et al., 2012)

Usage

```
gng_m2(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
  modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
 max\_treedepth = 10,
)
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "cue", "keyPressed", "outcome". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). For this model they are: "Qgo", "Qnogo", "Wgo", "Wnogo".
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Orthogonalized Go/Nogo Task, there should be 4 columns of data with the labels "subjID", "cue", "keyPressed", "outcome". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

cue Nominal integer representing the cue shown for that trial: 1, 2, 3, or 4.

keyPressed Binary value representing the subject's response for that trial (where Press == 1; No press == 0).

outcome Ternary value representing the outcome of that trial (where Positive feedback == 1; Neutral feedback == 0; Negative feedback == -1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"gng_m2").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Guitart-Masip, M., Huys, Q. J. M., Fuentemilla, L., Dayan, P., Duzel, E., & Dolan, R. J. (2012). Go and no-go learning in reward and punishment: Interactions between affect and effect. Neuroimage, 62(1), 154-166. https://doi.org/10.1016/j.neuroimage.2012.04.024

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- gng_m2(</pre>
 data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- gng_m2(
 data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

gng_m3

RW + noise + bias + pi

Description

Hierarchical Bayesian Modeling of the Orthogonalized Go/Nogo Task using RW + noise + bias + pi. It has the following parameters: xi (noise), ep (learning rate), b (action bias), pi (Pavlovian bias), rho (effective size).

- Task: Orthogonalized Go/Nogo Task
- Model: RW + noise + bias + pi (Guitart-Masip et al., 2012)

Usage

```
gng_m3(
 data = NULL,
 niter = 4000,
 nwarmup = 1000,
 nchain = 4,
 ncore = 1,
 nthin = 1,
 inits = "vb",
  indPars = "mean",
 modelRegressor = FALSE,
 vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
 max_treedepth = 10,
)
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "cue", "keyPressed", "outcome". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every $i == nthin$ sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). For this model they are: "Qgo", "Qnogo", "Wgo", "Wnogo", "SV".
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler

can take on each new iteration. See Details below.

on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Orthogonalized Go/Nogo Task, there should be 4 columns of data with the labels "subjID", "cue", "keyPressed", "outcome". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

cue Nominal integer representing the cue shown for that trial: 1, 2, 3, or 4.

keyPressed Binary value representing the subject's response for that trial (where Press == 1; No press == 0).

outcome Ternary value representing the outcome of that trial (where Positive feedback == 1; Neutral feedback == 0; Negative feedback == -1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to

'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"gng_m3").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Guitart-Masip, M., Huys, Q. J. M., Fuentemilla, L., Dayan, P., Duzel, E., & Dolan, R. J. (2012). Go and no-go learning in reward and punishment: Interactions between affect and effect. Neuroimage, 62(1), 154-166. https://doi.org/10.1016/j.neuroimage.2012.04.024

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- gng_m3(
    data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Run the model with example data
output <- gng_m3(
    data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

# Show the WAIC and LOOIC model fit estimates</pre>
```

```
printFit(output)
## End(Not run)
```

 gng_m4

RW(rew/pun) + noise + bias + pi

Description

Hierarchical Bayesian Modeling of the Orthogonalized Go/Nogo Task using RW (rew/pun) + noise + bias + pi. It has the following parameters: xi (noise), ep (learning rate), b (action bias), pi (Pavlovian bias), rhoRew (reward sensitivity), rhoPun (punishment sensitivity).

- Task: Orthogonalized Go/Nogo Task
- Model: RW (rew/pun) + noise + bias + pi (Cavanagh et al., 2013)

Usage

```
gng_m4(
  data = NULL,
 niter = 4000,
 nwarmup = 1000,
 nchain = 4,
  ncore = 1,
 nthin = 1,
  inits = "vb",
  indPars = "mean",
 modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
 max_treedepth = 10,
)
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "cue", "keyPressed", "outcome". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.

nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). For this model they are: "Qgo", "Qnogo", "Wgo", "Wnogo", "SV".
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See $\textbf{Details}$ below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Orthogonalized Go/Nogo Task, there should be 4 columns of data with the labels "subjID", "cue", "keyPressed", "outcome". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

cue Nominal integer representing the cue shown for that trial: 1, 2, 3, or 4.

keyPressed Binary value representing the subject's response for that trial (where Press == 1; No press == 0).

outcome Ternary value representing the outcome of that trial (where Positive feedback == 1; Neutral feedback == 0; Negative feedback == -1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in

samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"gng_m4").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Cavanagh, J. F., Eisenberg, I., Guitart-Masip, M., Huys, Q., & Frank, M. J. (2013). Frontal Theta Overrides Pavlovian Learning Biases. Journal of Neuroscience, 33(19), 8541-8548. https://doi.org/10.1523/JNEUROSCI.57512.2013

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM 118 HDIofMCMC

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- gng_m4(</pre>
  data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- gng_m4(</pre>
  data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

HDIofMCMC

Compute Highest-Density Interval

Description

Computes the highest density interval from a sample of representative values, estimated as shortest credible interval. Based on John Kruschke's codes.

Usage

```
HDIofMCMC(sampleVec, credMass = 0.95)
```

Arguments

sampleVec A vector of representative values from a probability distribution (e.g., MCMC

samples).

credMass A scalar between 0 and 1, indicating the mass within the credible interval that is

to be estimated.

Value

A vector containing the limits of the HDI

igt_orl 119

igt_orl

Outcome-Representation Learning Model

Description

Hierarchical Bayesian Modeling of the Iowa Gambling Task using Outcome-Representation Learning Model. It has the following parameters: Arew (reward learning rate), Apun (punishment learning rate), K (perseverance decay), betaF (outcome frequency weight), betaP (perseverance weight).

- Task: Iowa Gambling Task (Ahn et al., 2008)
- Model: Outcome-Representation Learning Model (Haines et al., 2018)

Usage

```
igt_orl(
  data = NULL,
 niter = 4000,
 nwarmup = 1000,
 nchain = 4,
 ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
 modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
 max_treedepth = 10,
)
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "choice", "gain", "loss". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.

igt_orl

inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
• • •	For this model, it's possible to set model-specific argument(s) as follows:
	payscale Raw payoffs within data are divided by this number. Used for scaling data. Defaults to 100.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Iowa Gambling Task, there should be 4 columns of data with the labels "subjID", "choice", "gain", "loss". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer indicating which deck was chosen on that trial (where A==1, B==2, C==3, and D==4).

gain Floating point value representing the amount of currency won on that trial (e.g. 50, 100).

loss Floating point value representing the amount of currency lost on that trial (e.g. 0, -50).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument

igt_orl 121

can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Nate Haines <<haines . 175@osu.edu>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"igt orl").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Ahn, W. Y., Busemeyer, J. R., & Wagenmakers, E. J. (2008). Comparison of decision learning models using the generalization criterion method. Cognitive Science, 32(8), 1376-1402. https://doi.org/10.1080/03640210802352

Haines, N., Vassileva, J., & Ahn, W.-Y. (2018). The Outcome-Representation Learning Model: A Novel Reinforcement Learning Model of the Iowa Gambling Task. Cognitive Science. https://doi.org/10.1111/cogs.12688

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- igt_orl(</pre>
 data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- igt_orl(</pre>
 data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

igt_pvl_decay

Prospect Valence Learning (PVL) Decay-RI

Description

Hierarchical Bayesian Modeling of the Iowa Gambling Task using Prospect Valence Learning (PVL) Decay-RI. It has the following parameters: A (decay rate), alpha (outcome sensitivity), cons (response consistency), lambda (loss aversion).

- Task: Iowa Gambling Task (Ahn et al., 2008)
- Model: Prospect Valence Learning (PVL) Decay-RI (Ahn et al., 2014)

Usage

```
igt_pvl_decay(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
  modelRegressor = FALSE,
```

```
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "choice", "gain", "loss". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, it's possible to set model-specific argument(s) as follows:
	payscale Raw payoffs within data are divided by this number. Used for scaling

data. Defaults to 100.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Iowa Gambling Task, there should be 4 columns of data with the labels "subjID", "choice", "gain", "loss". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer indicating which deck was chosen on that trial (where A==1, B==2, C==3, and D==4).

gain Floating point value representing the amount of currency won on that trial (e.g. 50, 100).

loss Floating point value representing the amount of currency lost on that trial (e.g. 0, -50).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"igt_pvl_decay").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Ahn, W. Y., Busemeyer, J. R., & Wagenmakers, E. J. (2008). Comparison of decision learning models using the generalization criterion method. Cognitive Science, 32(8), 1376-1402. https://doi.org/10.1080/03640210802352

Ahn, W.-Y., Vasilev, G., Lee, S.-H., Busemeyer, J. R., Kruschke, J. K., Bechara, A., & Vassileva, J. (2014). Decision-making in stimulant and opiate addicts in protracted abstinence: evidence from computational modeling with pure users. Frontiers in Psychology, 5, 1376. https://doi.org/10.3389/fpsyg.2014.00849

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- igt_pvl_decay(</pre>
  data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- igt_pvl_decay(</pre>
  data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

igt_pvl_delta

igt_pvl_delta

Prospect Valence Learning (PVL) Delta

Description

Hierarchical Bayesian Modeling of the Iowa Gambling Task using Prospect Valence Learning (PVL) Delta. It has the following parameters: A (learning rate), alpha (outcome sensitivity), cons (response consistency), lambda (loss aversion).

- Task: Iowa Gambling Task (Ahn et al., 2008)
- Model: Prospect Valence Learning (PVL) Delta (Ahn et al., 2008)

Usage

```
igt_pvl_delta(
  data = NULL,
 niter = 4000,
 nwarmup = 1000,
 nchain = 4,
 ncore = 1,
 nthin = 1,
  inits = "vb",
  indPars = "mean",
 modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
 max_treedepth = 10,
)
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "choice", "gain", "loss". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.

igt_pvl_delta 127

inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, it's possible to set model-specific argument(s) as follows:
	payscale Raw payoffs within data are divided by this number. Used for scaling data. Defaults to 100.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Iowa Gambling Task, there should be 4 columns of data with the labels "subjID", "choice", "gain", "loss". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer indicating which deck was chosen on that trial (where A==1, B==2, C==3, and D==4).

gain Floating point value representing the amount of currency won on that trial (e.g. 50, 100).

loss Floating point value representing the amount of currency lost on that trial (e.g. 0, -50).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument

igt_pvl_delta

can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"igt_pvl_delta").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Ahn, W. Y., Busemeyer, J. R., & Wagenmakers, E. J. (2008). Comparison of decision learning models using the generalization criterion method. Cognitive Science, 32(8), 1376-1402. https://doi.org/10.1080/03640210802352

Ahn, W. Y., Busemeyer, J. R., & Wagenmakers, E. J. (2008). Comparison of decision learning models using the generalization criterion method. Cognitive Science, 32(8), 1376-1402. https://doi.org/10.1080/03640210802352

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- igt_pvl_delta(</pre>
 data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- igt_pvl_delta(</pre>
 data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

igt_vpp

Value-Plus-Perseverance

Description

Hierarchical Bayesian Modeling of the Iowa Gambling Task using Value-Plus-Perseverance. It has the following parameters: A (learning rate), alpha (outcome sensitivity), cons (response consistency), lambda (loss aversion), epP (gain impact), epN (loss impact), K (decay rate), w (RL weight).

- Task: Iowa Gambling Task (Ahn et al., 2008)
- Model: Value-Plus-Perseverance (Worthy et al., 2013)

Usage

```
igt_vpp(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
  modelRegressor = FALSE,
```

```
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...
```

Arguments

•	•	
	data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "choice", "gain", "loss". See Details below for more information.
	niter	Number of iterations, including warm-up. Defaults to 4000.
	nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
	nchain	Number of Markov chains to run. Defaults to 4.
	ncore	Number of CPUs to be used for running. Defaults to 1.
	nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
	inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
	indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
	modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
	vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
	inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
	adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
	stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
	max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	• • •	For this model, it's possible to set model-specific argument(s) as follows:

payscale Raw payoffs within data are divided by this number. Used for scaling

data. Defaults to 100.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Iowa Gambling Task, there should be 4 columns of data with the labels "subjID", "choice", "gain", "loss". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer indicating which deck was chosen on that trial (where A==1, B==2, C==3, and D==4).

gain Floating point value representing the amount of currency won on that trial (e.g. 50, 100).

loss Floating point value representing the amount of currency lost on that trial (e.g. 0, -50).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"igt_vpp").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Ahn, W. Y., Busemeyer, J. R., & Wagenmakers, E. J. (2008). Comparison of decision learning models using the generalization criterion method. Cognitive Science, 32(8), 1376-1402. https://doi.org/10.1080/03640210802352

Worthy, D. A., & Todd Maddox, W. (2013). A comparison model of reinforcement-learning and win-stay-lose-shift decision-making processes: A tribute to W.K. Estes. Journal of Mathematical Psychology, 59, 41-49. https://doi.org/10.1016/j.jmp.2013.10.001

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- igt_vpp(</pre>
  data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- igt_vpp(
  data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

multiplot 133

multiplot Function to plot multiple figures

Description

Plots multiple figures Based on codes from 'http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)/'

Usage

```
multiplot(..., plots = NULL, cols = NULL)
```

Arguments

	Plot objects	
plots	List containing plot objects	
cols	Number of columns within the multi-figure plot	
peer_ocu	Other-Conferred Utility (OCU) Model	
p = 5 5 e a	one conjected charge (coo) model	

Description

Hierarchical Bayesian Modeling of the Peer Influence Task using Other-Conferred Utility (OCU) Model. It has the following parameters: rho (risk preference), tau (inverse temperature), ocu (other-conferred utility).

- Task: Peer Influence Task (Chung et al., 2015)
- Model: Other-Conferred Utility (OCU) Model

Usage

```
peer_ocu(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
  modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
```

peer_ocu

```
max_treedepth = 10,
    ...
)
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "condition", "p_gamble", "safe_Hpayoff", "safe_Lpayoff", "risky_Hpayoff", "risky_Lpayoff", "choice". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Peer Influence Task, there should be 8 columns of data with the labels "subjID", "condition",

peer_ocu 135

"p_gamble", "safe_Hpayoff", "safe_Lpayoff", "risky_Hpayoff", "risky_Lpayoff", "choice". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

condition 0: solo, 1: info (safe/safe), 2: info (mix), 3: info (risky/risky).

p_gamble Probability of receiving a high payoff (same for both options).

safe_Hpayoff High payoff of the safe option.

safe_Lpayoff Low payoff of the safe option.

risky_Hpayoff High payoff of the risky option.

risky_Lpayoff Low payoff of the risky option.

choice Which option was chosen? 0: safe, 1: risky.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Harhim Park <<hrp><hrpark12@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

peer_ocu

model Character value that is the name of the model (\code"peer_ocu").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Chung, D., Christopoulos, G. I., King-Casas, B., Ball, S. B., & Chiu, P. H. (2015). Social signals of safety and risk confer utility and have asymmetric effects on observers' choices. Nature Neuroscience, 18(6), 912-916.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- peer_ocu(</pre>
 data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- peer_ocu(
 data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

plotDist 137

plotDist

Plots the histogram of MCMC samples.

Description

Plots the histogram of MCMC samples.

Usage

```
plotDist(
   sample = NULL,
   Title = NULL,
   xLab = "Value",
   yLab = "Density",
   xLim = NULL,
   fontSize = NULL,
   binSize = NULL,
   ...
)
```

Arguments

sample	MCMC samples
Title	Character value containing the main title for the plot
xLab	Character value containing the x label
yLab	Character value containing the y label
xLim	Vector containing the lower and upper x-bounds of the plot
fontSize	Size of the font to use for plotting. Defaults to 10
binSize	Size of the bins for creating the histogram. Defaults to 30
	Arguments that can be additionally supplied to geom_histogram

Value

h1 Plot object

plotHDI

plotHDI	Plots highest density interval (HDI) from (MCMC) samples and prints HDI in the R console. HDI is indicated by a red line. Based on John Kruschke's codes.

Description

Plots highest density interval (HDI) from (MCMC) samples and prints HDI in the R console. HDI is indicated by a red line. Based on John Kruschke's codes.

Usage

```
plotHDI(
   sample = NULL,
   credMass = 0.95,
   Title = NULL,
   xLab = "Value",
   yLab = "Density",
   fontSize = NULL,
   binSize = 30,
   ...
)
```

Arguments

sample	MCMC samples
credMass	A scalar between 0 and 1 , indicating the mass within the credible interval that is to be estimated.
Title	Character value containing the main title for the plot
xLab	Character value containing the x label
yLab	Character value containing the y label
fontSize	Integer value specifying the font size to be used for the plot labels
binSize	Integer value specifyin ghow wide the bars on the histogram should be. Defaults to 30.
	Arguments that can be additionally supplied to geom_histogram

Value

A vector containing the limits of the HDI

plotInd 139

plotInd	Plots individual posterior distributions, using the stan_plot function of the rstan package

Description

Plots individual posterior distributions, using the stan_plot function of the rstan package

Usage

```
plotInd(obj = NULL, pars, show_density = T, ...)
```

Arguments

obj	An output of the hBayesDM. Its class should be 'hBayesDM'.
pars	(from stan_plot's help file) Character vector of parameter names. If unspecified, show all user-defined parameters or the first 10 (if there are more than 10)
show_density	T(rue) or F(alse). Show the density (T) or not (F)?
	(from stan_plot's help file) Optional additional named arguments passed to stan_plot, which will be passed to geoms. See stan_plot's help file.

Examples

```
## Not run:
# Run a model
output <- dd_hyperbolic("example", 2000, 1000, 3, 3)

# Plot the hyper parameters ('k' and 'beta')
plot(output)

# Plot individual 'k' (discounting rate) parameters
plotInd(output, "k")

# Plot individual 'beta' (inverse temperature) parameters
plotInd(output, "beta")

# Plot individual 'beta' parameters but don't show density
plotInd(output, "beta", show_density = F)

## End(Not run)</pre>
```

140 printFit

printFit	Print model-fits (mean LOOIC or WAIC values in addition to Akaike weights) of hBayesDM Models

Description

Print model-fits (mean LOOIC or WAIC values in addition to Akaike weights) of hBayesDM Models

Usage

```
printFit(..., ic = "looic", ncore = 2, roundTo = 3)
```

Arguments

... Model objects output by hBayesDM functions (e.g. output1, output2, etc.)

ic Which model comparison information criterion to use? 'looic', 'waic', or 'both

ncore Number of corse to use when computing LOOIC

roundTo Number of digits to the right of the decimal point in the output

Value

modelTable A table with relevant model comparison data. LOOIC and WAIC weights are computed as Akaike weights.

Examples

```
## Not run:
# Run two models and store results in "output1" and "output2"
output1 <- dd_hyperbolic("example", 2000, 1000, 3, 3)

output2 <- dd_exp("example", 2000, 1000, 3, 3)

# Show the LOOIC model fit estimates
printFit(output1, output2)

# To show the WAIC model fit estimates
printFit(output1, output2, ic = "waic")

# To show both LOOIC and WAIC
printFit(output1, output2, ic = "both")

## End(Not run)</pre>
```

prl_ewa 141

prl_ewa

Experience-Weighted Attraction Model

Description

Hierarchical Bayesian Modeling of the Probabilistic Reversal Learning Task using Experience-Weighted Attraction Model. It has the following parameters: phi (1 - learning rate), rho (experience decay factor), beta (inverse temperature).

- Task: Probabilistic Reversal Learning Task
- Model: Experience-Weighted Attraction Model (Ouden et al., 2013)

Usage

```
prl_ewa(
  data = NULL,
 niter = 4000,
 nwarmup = 1000,
 nchain = 4,
 ncore = 1,
 nthin = 1,
  inits = "vb",
  indPars = "mean",
 modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
 max_treedepth = 10,
)
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "choice", "outcome". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.

prl_ewa

inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). For this model they are: "ev_c", "ev_nc", "ew_c", "ew_nc".
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Probabilistic Reversal Learning Task, there should be 3 columns of data with the labels "subjID", "choice", "outcome". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on that trial: 1 or 2.

outcome Integer value representing the outcome of that trial (where reward == 1, and loss == -1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated

prl_ewa 143

from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Jaeyeong Yang (for model-based regressors) << jaeyeong.yang1125@gmail.com>>, Harhim Park (for model-based regressors) << hrpark12@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"prl_ewa").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Ouden, den, H. E. M., Daw, N. D., Fernandez, G., Elshout, J. A., Rijpkema, M., Hoogman, M., et al. (2013). Dissociable Effects of Dopamine and Serotonin on Reversal Learning. Neuron, 80(4), 1090-1100. https://doi.org/10.1016/j.neuron.2013.08.030

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- prl_ewa(
  data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)</pre>
```

prl_fictitious

```
# Run the model with example data
output <- prl_ewa(
   data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

# Show the WAIC and LOOIC model fit estimates
printFit(output)

## End(Not run)</pre>
```

prl_fictitious

Fictitious Update Model

Description

Hierarchical Bayesian Modeling of the Probabilistic Reversal Learning Task using Fictitious Update Model. It has the following parameters: eta (learning rate), alpha (indecision point), beta (inverse temperature).

- Task: Probabilistic Reversal Learning Task
- Model: Fictitious Update Model (Glascher et al., 2009)

Usage

```
prl_fictitious(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
  modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
 max\_treedepth = 10,
)
```

prl_fictitious 145

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "choice", "outcome". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). For this model they are: "ev_c", "ev_nc", "pe_c", "pe_nc", "dv".
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Probabilistic Reversal Learning Task, there should be 3 columns of data with the labels "subjID", "choice", "outcome". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on that trial: 1 or 2.

prl_fictitious

outcome Integer value representing the outcome of that trial (where reward == 1, and loss == -1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Jaeyeong Yang (for model-based regressors) << jaeyeong.yang1125@gmail.com>>, Harhim Park (for model-based regressors) << hrpark12@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"prl_fictitious").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Glascher, J., Hampton, A. N., & O'Doherty, J. P. (2009). Determining a Role for Ventromedial Prefrontal Cortex in Encoding Action-Based Value Signals During Reward-Related Decision Making. Cerebral Cortex, 19(2), 483-495. https://doi.org/10.1093/cercor/bhn098

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- prl_fictitious(</pre>
 data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- prl_fictitious(</pre>
 data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

Description

prl_fictitious_multipleB

Multiple-Block Hierarchical Bayesian Modeling of the Probabilistic Reversal Learning Task using Fictitious Update Model. It has the following parameters: eta (learning rate), alpha (indecision point), beta (inverse temperature).

- Task: Probabilistic Reversal Learning Task
- Model: Fictitious Update Model (Glascher et al., 2009)

Fictitious Update Model

Usage

```
prl_fictitious_multipleB(
 data = NULL,
 niter = 4000,
 nwarmup = 1000,
 nchain = 4,
 ncore = 1,
 nthin = 1,
 inits = "vb",
  indPars = "mean",
 modelRegressor = FALSE,
 vb = FALSE,
 inc_postpred = FALSE,
 adapt_delta = 0.95,
  stepsize = 1,
 max_treedepth = 10,
)
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "block", "choice", "outcome". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). For this model they are: "ev_c", "ev_nc", "pe_c", "pe_nc", "dv".
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler

can take on each new iteration. See Details below.

on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Probabilistic Reversal Learning Task, there should be 4 columns of data with the labels "subjID", "block", "choice", "outcome". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

block A unique identifier for each of the multiple blocks within each subject.

choice Integer value representing the option chosen on that trial: 1 or 2.

outcome Integer value representing the outcome of that trial (where reward == 1, and loss == -1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler

control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Jaeyeong Yang (for model-based regressors) << jaeyeong.yang1125@gmail.com>>, Harhim Park (for model-based regressors) << hrpark12@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"prl_fictitious_multipleB").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Glascher, J., Hampton, A. N., & O'Doherty, J. P. (2009). Determining a Role for Ventromedial Prefrontal Cortex in Encoding Action-Based Value Signals During Reward-Related Decision Making. Cerebral Cortex, 19(2), 483-495. https://doi.org/10.1093/cercor/bhn098

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- prl_fictitious_multipleB(
    data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Run the model with example data
output <- prl_fictitious_multipleB(
    data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)</pre>
```

prl_fictitious_rp 151

```
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

prl_fictitious_rp

Fictitious Update Model, with separate learning rates for positive and negative prediction error (PE)

Description

Hierarchical Bayesian Modeling of the Probabilistic Reversal Learning Task using Fictitious Update Model, with separate learning rates for positive and negative prediction error (PE). It has the following parameters: eta_pos (learning rate, +PE), eta_neg (learning rate, -PE), alpha (indecision point), beta (inverse temperature).

- Task: Probabilistic Reversal Learning Task
- **Model**: Fictitious Update Model, with separate learning rates for positive and negative prediction error (PE) (Glascher et al., 2009; Ouden et al., 2013)

Usage

```
prl_fictitious_rp(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
 modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
 max_treedepth = 10,
)
```

Arguments

data

Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "choice", "outcome". See **Details** below for more information.

niter

Number of iterations, including warm-up. Defaults to 4000.

prl_fictitious_rp

nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every $i == nthin$ sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). For this model they are: "ev_c", "ev_nc", "pe_c", "pe_nc", "dv".
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Probabilistic Reversal Learning Task, there should be 3 columns of data with the labels "subjID", "choice", "outcome". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on that trial: 1 or 2.

outcome Integer value representing the outcome of that trial (where reward == 1, and loss == -1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in

prl_fictitious_rp 153

samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Jaeyeong Yang (for model-based regressors) << jaeyeong.yang1125@gmail.com>>, Harhim Park (for model-based regressors) << hrpark12@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"prl_fictitious_rp").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Glascher, J., Hampton, A. N., & O'Doherty, J. P. (2009). Determining a Role for Ventromedial Prefrontal Cortex in Encoding Action-Based Value Signals During Reward-Related Decision Making. Cerebral Cortex, 19(2), 483-495. https://doi.org/10.1093/cercor/bhn098

Ouden, den, H. E. M., Daw, N. D., Fernandez, G., Elshout, J. A., Rijpkema, M., Hoogman, M., et al. (2013). Dissociable Effects of Dopamine and Serotonin on Reversal Learning. Neuron, 80(4), 1090-1100. https://doi.org/10.1016/j.neuron.2013.08.030

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- prl_fictitious_rp(</pre>
 data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- prl_fictitious_rp(</pre>
 data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

prl_fictitious_rp_woa Fictitious Update Model, with separate learning rates for positive and negative prediction error (PE), without alpha (indecision point)

Description

Hierarchical Bayesian Modeling of the Probabilistic Reversal Learning Task using Fictitious Update Model, with separate learning rates for positive and negative prediction error (PE), without alpha (indecision point). It has the following parameters: eta_pos (learning rate, +PE), eta_neg (learning rate, -PE), beta (inverse temperature).

- Task: Probabilistic Reversal Learning Task
- **Model**: Fictitious Update Model, with separate learning rates for positive and negative prediction error (PE), without alpha (indecision point) (Glascher et al., 2009; Ouden et al., 2013)

prl_fictitious_rp_woa 155

Usage

```
prl_fictitious_rp_woa(
 data = NULL,
 niter = 4000,
 nwarmup = 1000,
 nchain = 4,
 ncore = 1,
 nthin = 1,
 inits = "vb",
 indPars = "mean",
 modelRegressor = FALSE,
 vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
 max_treedepth = 10,
)
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "choice", "outcome". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every $i == nthin$ sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). For this model they are: "ev_c", "ev_nc", "pe_c", "pe_nc", "dv".
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler

can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take

on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Probabilistic Reversal Learning Task, there should be 3 columns of data with the labels "subjID", "choice", "outcome". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on that trial: 1 or 2.

outcome Integer value representing the outcome of that trial (where reward == 1, and loss == -1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan

prl_fictitious_rp_woa 157

User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Jaeyeong Yang (for model-based regressors) << jaeyeong.yang1125@gmail.com>>, Harhim Park (for model-based regressors) << hrpark12@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"prl_fictitious_rp_woa").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Glascher, J., Hampton, A. N., & O'Doherty, J. P. (2009). Determining a Role for Ventromedial Prefrontal Cortex in Encoding Action-Based Value Signals During Reward-Related Decision Making. Cerebral Cortex, 19(2), 483-495. https://doi.org/10.1093/cercor/bhn098

Ouden, den, H. E. M., Daw, N. D., Fernandez, G., Elshout, J. A., Rijpkema, M., Hoogman, M., et al. (2013). Dissociable Effects of Dopamine and Serotonin on Reversal Learning. Neuron, 80(4), 1090-1100. https://doi.org/10.1016/j.neuron.2013.08.030

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- prl_fictitious_rp_woa(
    data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Run the model with example data
output <- prl_fictitious_rp_woa(
    data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)</pre>
```

prl_fictitious_woa

```
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

# Show the WAIC and LOOIC model fit estimates
printFit(output)

## End(Not run)
```

prl_fictitious_woa

Fictitious Update Model, without alpha (indecision point)

Description

Hierarchical Bayesian Modeling of the Probabilistic Reversal Learning Task using Fictitious Update Model, without alpha (indecision point). It has the following parameters: eta (learning rate), beta (inverse temperature).

- Task: Probabilistic Reversal Learning Task
- Model: Fictitious Update Model, without alpha (indecision point) (Glascher et al., 2009)

Usage

```
prl_fictitious_woa(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
  modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
  max\_treedepth = 10,
)
```

Arguments

data

Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "choice", "outcome". See **Details** below for more information.

niter

Number of iterations, including warm-up. Defaults to 4000.

159 prl_fictitious_woa

nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). For this model they are: "ev_c", "ev_nc", "pe_c", "pe_nc", "dv".
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: " y_pred "
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See $\textbf{Details}$ below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Probabilistic Reversal Learning Task, there should be 3 columns of data with the labels "subjID", "choice", "outcome". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on that trial: 1 or 2.

outcome Integer value representing the outcome of that trial (where reward == 1, and loss == -1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in prl_fictitious_woa

samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Jaeyeong Yang (for model-based regressors) << jaeyeong.yang1125@gmail.com>>, Harhim Park (for model-based regressors) << hrpark12@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"prl_fictitious_woa").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Glascher, J., Hampton, A. N., & O'Doherty, J. P. (2009). Determining a Role for Ventromedial Prefrontal Cortex in Encoding Action-Based Value Signals During Reward-Related Decision Making. Cerebral Cortex, 19(2), 483-495. https://doi.org/10.1093/cercor/bhn098

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM prl_rp 161

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- prl_fictitious_woa(</pre>
  data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- prl_fictitious_woa(</pre>
  data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

prl_rp

Reward-Punishment Model

Description

Hierarchical Bayesian Modeling of the Probabilistic Reversal Learning Task using Reward-Punishment Model. It has the following parameters: Apun (punishment learning rate), Arew (reward learning rate), beta (inverse temperature).

- Task: Probabilistic Reversal Learning Task
- Model: Reward-Punishment Model (Ouden et al., 2013)

Usage

```
prl_rp(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
  modelRegressor = FALSE,
```

162 prl_rp

```
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "choice", "outcome". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). For this model they are: "ev_c", "ev_nc", "pe".
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for

prl_rp 163

the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Probabilistic Reversal Learning Task, there should be 3 columns of data with the labels "subjID", "choice", "outcome". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on that trial: 1 or 2.

outcome Integer value representing the outcome of that trial (where reward == 1, and loss == -1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Jaeyeong Yang (for model-based regressors) << jaeyeong.yang1125@gmail.com>>, Harhim Park (for model-based regressors) << hrpark12@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"prl_rp").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Ouden, den, H. E. M., Daw, N. D., Fernandez, G., Elshout, J. A., Rijpkema, M., Hoogman, M., et al. (2013). Dissociable Effects of Dopamine and Serotonin on Reversal Learning. Neuron, 80(4), 1090-1100. https://doi.org/10.1016/j.neuron.2013.08.030

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- prl_rp(
 data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- prl_rp(</pre>
 data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

Description

Multiple-Block Hierarchical Bayesian Modeling of the Probabilistic Reversal Learning Task using Reward-Punishment Model. It has the following parameters: Apun (punishment learning rate), Arew (reward learning rate), beta (inverse temperature).

- Task: Probabilistic Reversal Learning Task
- Model: Reward-Punishment Model (Ouden et al., 2013)

Usage

```
prl_rp_multipleB(
  data = NULL,
  niter = 4000,
 nwarmup = 1000,
 nchain = 4,
 ncore = 1,
 nthin = 1,
  inits = "vb",
  indPars = "mean",
 modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
 max_treedepth = 10,
)
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "block", "choice", "outcome". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). For this model they are: "ev_c", "ev_nc", "pe". Use variational inference to approximately draw from a posterior distribution. νh Defaults to FALSE. inc_postpred Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y pred" adapt_delta Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See **Details** below. Integer value specifying the size of each leapfrog step that the MCMC sampler stepsize can take on each new iteration. See **Details** below. max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below. For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Probabilistic Reversal Learning Task, there should be 4 columns of data with the labels "subjID", "block", "choice", "outcome". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

block A unique identifier for each of the multiple blocks within each subject.

choice Integer value representing the option chosen on that trial: 1 or 2.

outcome Integer value representing the outcome of that trial (where reward == 1, and loss == -1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Jaeyeong Yang (for model-based regressors) << jaeyeong.yang1125@gmail.com>>, Harhim Park (for model-based regressors) << hrpark12@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"prl_rp_multipleB").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Ouden, den, H. E. M., Daw, N. D., Fernandez, G., Elshout, J. A., Rijpkema, M., Hoogman, M., et al. (2013). Dissociable Effects of Dopamine and Serotonin on Reversal Learning. Neuron, 80(4), 1090-1100. https://doi.org/10.1016/j.neuron.2013.08.030

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- prl_rp_multipleB(
   data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Run the model with example data
output <- prl_rp_multipleB(
   data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)</pre>
```

168 pstRT_ddm

```
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

# Show the WAIC and LOOIC model fit estimates
printFit(output)

## End(Not run)
```

pstRT_ddm

Drift Diffusion Model

Description

Hierarchical Bayesian Modeling of the Probabilistic Selection Task (with RT data) using Drift Diffusion Model. It has the following parameters: a (boundary separation), tau (non-decision time), d1 (drift rate scaling), d2 (drift rate scaling), d3 (drift rate scaling).

- Task: Probabilistic Selection Task (with RT data) (Frank et al., 2007; Frank et al., 2004)
- Model: Drift Diffusion Model (Pedersen et al., 2017)

Usage

```
pstRT_ddm(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
  modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
 max\_treedepth = 10,
)
```

pstRT_ddm 169

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "cond", "choice", "RT". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "choice_os", "RT_os"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, it's possible to set model-specific argument(s) as follows:
	RTbound Floating point value representing the lower bound (i.e., minimum allowed) reaction time. Defaults to 0.1 (100 milliseconds).

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Probabilistic Selection Task (with RT data), there should be 4 columns of data with the labels "subjID", "cond", "choice", "RT". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

170 pstRT_ddm

subjID A unique identifier for each subject in the data-set.

cond Integer value representing the task condition of the given trial (AB == 1, CD == 2, EF == 3). **choice** Integer value representing the option chosen on the given trial (1 or 2).

RT Float value representing the time taken for the response on the given trial.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Hoyoung Doh <<hoyoung.doh@gmail.com>>, Sanghoon Kang <<sanghoon.kang@yale.edu>>, Jihyun K. Hur << jihyun.hur@yale.edu>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"pstRT ddm").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Frank, M. J., Santamaria, A., O'Reilly, R. C., & Willcutt, E. (2007). Testing computational models of dopamine and noradrenaline dysfunction in attention deficit/hyperactivity disorder. Neuropsychopharmacology, 32(7), 1583-1599.

Frank, M. J., Seeberger, L. C., & O'reilly, R. C. (2004). By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science, 306(5703), 1940-1943.

Pedersen, M. L., Frank, M. J., & Biele, G. (2017). The drift diffusion model as the choice rule in reinforcement learning. Psychonomic bulletin & review, 24(4), 1234-1251.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- pstRT_ddm(</pre>
 data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- pstRT_ddm(</pre>
 data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

pstRT_rlddm1

Reinforcement Learning Drift Diffusion Model 1

Description

Hierarchical Bayesian Modeling of the Probabilistic Selection Task (with RT data) using Reinforcement Learning Drift Diffusion Model 1. It has the following parameters: a (boundary separation), tau (non-decision time), v (drift rate scaling), alpha (learning rate).

- Task: Probabilistic Selection Task (with RT data) (Frank et al., 2007; Frank et al., 2004)
- Model: Reinforcement Learning Drift Diffusion Model 1 (Pedersen et al., 2017)

Usage

```
pstRT_rlddm1(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
  modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
  max_treedepth = 10,
)
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "sub-jID", "cond", "prob", "choice", "RT", "feedback". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). For this model they are: "Q1", "Q2".
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "choice_os", "RT_os", "choice_sm", "RT_sm", "fd_sm" adapt_delta Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See **Details** below. Integer value specifying the size of each leapfrog step that the MCMC sampler stepsize can take on each new iteration. See **Details** below. max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below. For this model, it's possible to set **model-specific argument(s)** as follows: RTbound Floating point value representing the lower bound (i.e., minimum allowed) reaction time. Defaults to 0.1 (100 milliseconds). **initQ** Floating point value representing the model's initial value of any choice.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Probabilistic Selection Task (with RT data), there should be 6 columns of data with the labels "subjID", "cond", "prob", "choice", "RT", "feedback". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

cond Integer value representing the task condition of the given trial (AB == 1, CD == 2, EF == 3).

prob Float value representing the probability that a correct response (1) is rewarded in the current task condition.

choice Integer value representing the option chosen on the given trial (1 or 2).

RT Float value representing the time taken for the response on the given trial.

feedback Integer value representing the outcome of the given trial (where 'correct' == 1, and 'incorrect' == 0).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Hoyoung Doh <<hoyoung.doh@gmail.com>>, Sanghoon Kang <<sanghoon.kang@yale.edu>>, Jihyun K. Hur << jihyun.hur@yale.edu>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"pstRT rlddm1").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Frank, M. J., Santamaria, A., O'Reilly, R. C., & Willcutt, E. (2007). Testing computational models of dopamine and noradrenaline dysfunction in attention deficit/hyperactivity disorder. Neuropsychopharmacology, 32(7), 1583-1599.

Frank, M. J., Seeberger, L. C., & O'reilly, R. C. (2004). By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science, 306(5703), 1940-1943.

Pedersen, M. L., Frank, M. J., & Biele, G. (2017). The drift diffusion model as the choice rule in reinforcement learning. Psychonomic bulletin & review, 24(4), 1234-1251.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- pstRT_rlddm1(</pre>
 data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- pstRT_rlddm1(</pre>
 data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

pstRT_rlddm6

Reinforcement Learning Drift Diffusion Model 6

Description

Hierarchical Bayesian Modeling of the Probabilistic Selection Task (with RT data) using Reinforcement Learning Drift Diffusion Model 6. It has the following parameters: a (boundary separation), bp (boundary separation power), tau (non-decision time), v (drift rate scaling), alpha_pos (learning rate for positive prediction error), alpha_neg (learning rate for negative prediction error).

- Task: Probabilistic Selection Task (with RT data) (Frank et al., 2007; Frank et al., 2004)
- Model: Reinforcement Learning Drift Diffusion Model 6 (Pedersen et al., 2017)

Usage

```
pstRT_rlddm6(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
```

```
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...
)
```

Arguments

Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an intersective window. Columns in the dataset must include: "subiD"

data with an interactive window. Columns in the dataset must include: "subjID", "iter", "cond", "prob", "choice", "RT", "feedback". See **Details** below for more

information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.

Defaults to 1. A higher number can be used when auto-correlation within the

MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible

options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current

options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). For this model they

are: "Q1", "Q2".

vb Use variational inference to approximately draw from a posterior distribution.

Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly

increase file size). Defaults to FALSE. If set to TRUE, it includes: "choice os",

"RT os", "choice sm", "RT sm", "fd sm"

adapt_delta Floating point value representing the target acceptance probability of a new sam-

ple in the MCMC chain. Must be between 0 and 1. See **Details** below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler

can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take

on each new iteration. See Details below.

... For this model, it's possible to set **model-specific argument(s)** as follows:

RTbound Floating point value representing the lower bound (i.e., minimum

allowed) reaction time. Defaults to 0.1 (100 milliseconds).

initQ Floating point value representing the model's initial value of any choice.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Probabilistic Selection Task (with RT data), there should be 7 columns of data with the labels "subjID", "iter", "cond", "prob", "choice", "RT", "feedback". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

iter Integer value representing the trial number for each task condition.

cond Integer value representing the task condition of the given trial (AB == 1, CD == 2, EF == 3).

prob Float value representing the probability that a correct response (1) is rewarded in the current task condition.

choice Integer value representing the option chosen on the given trial (1 or 2).

RT Float value representing the time taken for the response on the given trial.

feedback Integer value representing the outcome of the given trial (where 'correct' == 1, and 'incorrect' == 0).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler

control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Hoyoung Doh <<hoyoung.doh@gmail.com>>, Sanghoon Kang <<sanghoon.kang@yale.edu>>, Jihyun K. Hur << jihyun.hur@yale.edu>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"pstRT_rlddm6").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Frank, M. J., Santamaria, A., O'Reilly, R. C., & Willcutt, E. (2007). Testing computational models of dopamine and noradrenaline dysfunction in attention deficit/hyperactivity disorder. Neuropsychopharmacology, 32(7), 1583-1599.

Frank, M. J., Seeberger, L. C., & O'reilly, R. C. (2004). By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science, 306(5703), 1940-1943.

Pedersen, M. L., Frank, M. J., & Biele, G. (2017). The drift diffusion model as the choice rule in reinforcement learning. Psychonomic bulletin & review, 24(4), 1234-1251.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- pstRT_rlddm6(
    data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Run the model with example data
output <- pstRT_rlddm6(
    data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

# Check Rhat values (all Rhat values should be less than or equal to 1.1)</pre>
```

pst_gainloss_Q 179

```
rhat(output)

# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

# Show the WAIC and LOOIC model fit estimates
printFit(output)

## End(Not run)
```

pst_gainloss_Q

Gain-Loss Q Learning Model

Description

Hierarchical Bayesian Modeling of the Probabilistic Selection Task using Gain-Loss Q Learning Model. It has the following parameters: alpha_pos (learning rate for positive feedbacks), alpha_neg (learning rate for negative feedbacks), beta (inverse temperature).

- Task: Probabilistic Selection Task
- Model: Gain-Loss Q Learning Model (Frank et al., 2007)

Usage

```
pst_gainloss_Q(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
  modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
  max_treedepth = 10,
)
```

Arguments

data

Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "type", "choice", "reward". See **Details** below for more information.

pst_gainloss_Q

niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every $i == nthin$ sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Probabilistic Selection Task, there should be 4 columns of data with the labels "subjID", "type", "choice", "reward". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

type Two-digit number indicating which pair of stimuli were presented for that trial, e.g. 12, 34, or 56. The digit on the left (tens-digit) indicates the presented stimulus for option1, while the digit on the right (ones-digit) indicates that for option2. Code for each stimulus type (1~6) is defined as for 80% (type 1), 20% (type 2), 70% (type 3), 30% (type 4), 60% (type 5), 40% (type 6). The modeling will still work even if different probabilities are used for the stimuli; however, the total number of stimuli should be less than or equal to 6.

choice Whether the subject chose the left option (option1) out of the given two options (i.e. if option1 was chosen, 1; if option2 was chosen, 0).

pst_gainloss_Q 181

reward Amount of reward earned as a result of the trial.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Jaeyeong Yang << jaeyeong.yang1125@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"pst_gainloss_Q").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Frank, M. J., Moustafa, A. A., Haughey, H. M., Curran, T., & Hutchison, K. E. (2007). Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning. Proceedings of the National Academy of Sciences, 104(41), 16311-16316.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- pst_gainloss_Q(</pre>
 data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- pst_gainloss_Q(</pre>
 data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

pst_Q

Q Learning Model

Description

Hierarchical Bayesian Modeling of the Probabilistic Selection Task using Q Learning Model. It has the following parameters: alpha (learning rate), beta (inverse temperature).

- Task: Probabilistic Selection Task
- Model: Q Learning Model (Frank et al., 2007)

Usage

```
pst_Q(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
```

```
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...
)
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "type", "choice", "reward". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Probabilistic Selection Task, there should be 4 columns of data with the labels "subjID", "type", "choice", "reward". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

type Two-digit number indicating which pair of stimuli were presented for that trial, e.g. 12, 34, or 56. The digit on the left (tens-digit) indicates the presented stimulus for option1, while the digit on the right (ones-digit) indicates that for option2. Code for each stimulus type (1~6) is defined as for 80% (type 1), 20% (type 2), 70% (type 3), 30% (type 4), 60% (type 5), 40% (type 6). The modeling will still work even if different probabilities are used for the stimuli; however, the total number of stimuli should be less than or equal to 6.

choice Whether the subject chose the left option (option1) out of the given two options (i.e. if option1 was chosen, 1; if option2 was chosen, 0).

reward Amount of reward earned as a result of the trial.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan

User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: David Munoz Tord <<david.munoztord@unige.ch>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"pst_Q").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Frank, M. J., Moustafa, A. A., Haughey, H. M., Curran, T., & Hutchison, K. E. (2007). Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning. Proceedings of the National Academy of Sciences, 104(41), 16311-16316.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- pst_Q(
    data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Run the model with example data
output <- pst_Q(
    data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

# Show the WAIC and LOOIC model fit estimates
printFit(output)</pre>
```

ra_noLA

```
## End(Not run)
```

ra_noLA

Prospect Theory, without loss aversion (LA) parameter

Description

Hierarchical Bayesian Modeling of the Risk Aversion Task using Prospect Theory, without loss aversion (LA) parameter. It has the following parameters: rho (risk aversion), tau (inverse temperature).

- Task: Risk Aversion Task
- Model: Prospect Theory, without loss aversion (LA) parameter (Sokol-Hessner et al., 2009)

Usage

```
ra_noLA(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
 modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
 max_treedepth = 10,
)
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "gain", "loss", "cert", "gamble". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.

ra_noLA 187

nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Risk Aversion Task, there should be 5 columns of data with the labels "subjID", "gain", "loss", "cert", "gamble". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

gain Possible (50%) gain outcome of a risky option (e.g. 9).

loss Possible (50%) loss outcome of a risky option (e.g. 5, or -5).

cert Guaranteed amount of a safe option. "cert" is assumed to be zero or greater than zero.

gamble If gamble was taken, gamble == 1; else gamble == 0.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains

ra_noLA

begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"ra noLA").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Sokol-Hessner, P., Hsu, M., Curley, N. G., Delgado, M. R., Camerer, C. F., Phelps, E. A., & Smith, E. E. (2009). Thinking like a Trader Selectively Reduces Individuals' Loss Aversion. Proceedings of the National Academy of Sciences of the United States of America, 106(13), 5035-5040. https://www.pnas.org/content/106/13/5035

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM ra_noRA 189

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- ra_noLA(
 data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- ra_noLA(</pre>
 data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

ra_noRA

Prospect Theory, without risk aversion (RA) parameter

Description

Hierarchical Bayesian Modeling of the Risk Aversion Task using Prospect Theory, without risk aversion (RA) parameter. It has the following parameters: lambda (loss aversion), tau (inverse temperature).

- Task: Risk Aversion Task
- Model: Prospect Theory, without risk aversion (RA) parameter (Sokol-Hessner et al., 2009)

Usage

```
ra_noRA(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
  modelRegressor = FALSE,
```

190 ra_noRA

```
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "gain", "loss", "cert", "gamble". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every $i == nthin$ sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model. $ \begin{tabular}{ll} \end{tabular} \begin{tabular}{l$
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for

ra_noRA 191

the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Risk Aversion Task, there should be 5 columns of data with the labels "subjID", "gain", "loss", "cert", "gamble". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

gain Possible (50%) gain outcome of a risky option (e.g. 9).

loss Possible (50%) loss outcome of a risky option (e.g. 5, or -5).

cert Guaranteed amount of a safe option. "cert" is assumed to be zero or greater than zero.

gamble If gamble was taken, gamble == 1; else gamble == 0.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"ra_noRA").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Sokol-Hessner, P., Hsu, M., Curley, N. G., Delgado, M. R., Camerer, C. F., Phelps, E. A., & Smith, E. E. (2009). Thinking like a Trader Selectively Reduces Individuals' Loss Aversion. Proceedings of the National Academy of Sciences of the United States of America, 106(13), 5035-5040. https://www.pnas.org/content/106/13/5035

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- ra_noRA(</pre>
 data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- ra_noRA(</pre>
 data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

Description

Hierarchical Bayesian Modeling of the Risk Aversion Task using Prospect Theory. It has the following parameters: rho (risk aversion), lambda (loss aversion), tau (inverse temperature).

- Task: Risk Aversion Task
- Model: Prospect Theory (Sokol-Hessner et al., 2009)

Usage

```
ra_prospect(
 data = NULL,
 niter = 4000,
 nwarmup = 1000,
 nchain = 4,
 ncore = 1,
 nthin = 1,
 inits = "vb",
 indPars = "mean",
 modelRegressor = FALSE,
 vb = FALSE,
 inc_postpred = FALSE,
 adapt_delta = 0.95,
 stepsize = 1,
 max_treedepth = 10,
)
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "gain", "loss", "cert", "gamble". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every $i == nthin$ sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.

vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: " y_pred "
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Risk Aversion Task, there should be 5 columns of data with the labels "subjID", "gain", "loss", "cert", "gamble". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

gain Possible (50%) gain outcome of a risky option (e.g. 9).

loss Possible (50%) loss outcome of a risky option (e.g. 5, or -5).

cert Guaranteed amount of a safe option. "cert" is assumed to be zero or greater than zero.

gamble If gamble was taken, gamble == 1; else gamble == 0.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"ra_prospect").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Sokol-Hessner, P., Hsu, M., Curley, N. G., Delgado, M. R., Camerer, C. F., Phelps, E. A., & Smith, E. E. (2009). Thinking like a Trader Selectively Reduces Individuals' Loss Aversion. Proceedings of the National Academy of Sciences of the United States of America, 106(13), 5035-5040. https://www.pnas.org/content/106/13/5035

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- ra_prospect(
   data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Run the model with example data
output <- ra_prospect(
   data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")</pre>
```

196 rdt_happiness

```
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

# Show the WAIC and LOOIC model fit estimates
printFit(output)

## End(Not run)
```

rdt_happiness

Happiness Computational Model

Description

Hierarchical Bayesian Modeling of the Risky Decision Task using Happiness Computational Model. It has the following parameters: w0 (baseline), w1 (weight of certain rewards), w2 (weight of expected values), w3 (weight of reward prediction errors), gam (forgetting factor), sig (standard deviation of error).

- Task: Risky Decision Task
- Model: Happiness Computational Model (Rutledge et al., 2014)

Usage

```
rdt_happiness(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
 modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
 max\_treedepth = 10,
)
```

rdt_happiness 197

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "gain", "loss", "cert", "type", "gamble", "outcome", "happy", "RT_happy". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Risky Decision Task, there should be 9 columns of data with the labels "subjID", "gain", "loss", "cert", "type", "gamble", "outcome", "happy", "RT_happy". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

198 rdt_happiness

```
gain Possible (50%) gain outcome of a risky option (e.g. 9).

loss Possible (50%) loss outcome of a risky option (e.g. 5, or -5).

cert Guaranteed amount of a safe option.

type loss == -1, mixed == 0, gain == 1

gamble If gamble was taken, gamble == 1; else gamble == 0.

outcome Result of the trial.

happy Happiness score.
```

RT_happy Reaction time for answering the happiness score.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Harhim Park <<hrp><hrpark12@gmail.com>></hr>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"rdt_happiness").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

rhat 199

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Rutledge, R. B., Skandali, N., Dayan, P., & Dolan, R. J. (2014). A computational and neural model of momentary subjective well-being. Proceedings of the National Academy of Sciences, 111(33), 12252-12257.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- rdt_happiness(</pre>
 data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- rdt_happiness(</pre>
 data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

rhat

Function for extracting Rhat values from an hBayesDM object

Description

A convenience function for extracting Rhat values from an hBayesDM object. Can also check if all Rhat values are less than or equal to a specified value. If variational inference was used, an error message will be displayed.

200 task2AFC_sdt

Usage

```
rhat(fit = NULL, less = NULL)
```

Arguments

fit Model output of class hBayesDM

less A numeric value specifying how to check Rhat values. Defaults to FALSE.

Value

If 'less' is specified, then rhat(fit, less) will return TRUE if all Rhat values are less than or equal to 'less'. If any values are greater than 'less', rhat(fit, less) will return FALSE. If 'less' is left unspecified (NULL), rhat(fit) will return a data. frame object containing all Rhat values.

task2AFC_sdt

Signal detection theory model

Description

Hierarchical Bayesian Modeling of the 2-alternative forced choice task using Signal detection theory model. It has the following parameters: d (discriminability), c (decision bias (criteria)).

- Task: 2-alternative forced choice task
- Model: Signal detection theory model

Usage

```
task2AFC_sdt(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
  modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
 max_treedepth = 10,
)
```

task2AFC_sdt 201

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "stimulus", "response". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the 2-alternative forced choice task, there should be 3 columns of data with the labels "subjID", "stimulus", "response". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

stimulus Types of Stimuli (Should be 1 or 0. 1 for Signal and 0 for Noise)

202 task2AFC_sdt

response Types of Responses (It should be same format as the stimulus field. Should be 1 or 0)

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Heesun Park <<heesunpark26@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"task2AFC_sdt").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM ts_par4 203

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- task2AFC_sdt(</pre>
 data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- task2AFC_sdt(</pre>
 data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

ts_par4

Hybrid Model, with 4 parameters

Description

Hierarchical Bayesian Modeling of the Two-Step Task using Hybrid Model, with 4 parameters. It has the following parameters: a (learning rate for both stages 1 & 2), beta (inverse temperature for both stages 1 & 2), pi (perseverance), w (model-based weight).

- Task: Two-Step Task (Daw et al., 2011)
- Model: Hybrid Model, with 4 parameters (Daw et al., 2011; Wunderlich et al., 2012)

Usage

```
ts_par4(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
  modelRegressor = FALSE,
```

204 ts_par4

```
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a
	tab-seperated txt file, "example" to use example data, or "choose" to choose
	data with an interactive window. Columns in the dataset must include: "sub-
	jID", "level1_choice", "level2_choice", "reward". See Details below for more
	information.

niter Number of iterations, including warm-up. Defaults to 4000.

Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.

Defaults to 1. A higher number can be used when auto-correlation within the

MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible

options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current

options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for

this model.

vb Use variational inference to approximately draw from a posterior distribution.

Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly

increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred_step1",

"y_pred_step2"

adapt_delta Floating point value representing the target acceptance probability of a new sam-

ple in the MCMC chain. Must be between 0 and 1. See **Details** below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler

can take on each new iteration. See Details below.

on each new iteration. See **Details** below.

For this model, it's possible to set **model-specific argument(s)** as follows:

trans_prob Common state transition probability from Stage (Level) 1 to Stage (Level) 2. Defaults to 0.7.

ts_par4 205

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Two-Step Task, there should be 4 columns of data with the labels "subjID", "level1_choice", "level2_choice", "reward". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

level1 choice Choice made for Level (Stage) 1 (1: stimulus 1, 2: stimulus 2).

level2_choice Choice made for Level (Stage) 2 (1: stimulus 3, 2: stimulus 4, 3: stimulus 5, 4: stimulus 6).

Note that, in our notation, choosing stimulus 1 in Level 1 leads to stimulus 3 & 4 in Level 2 with a common (0.7 by default) transition. Similarly, choosing stimulus 2 in Level 1 leads to stimulus 5 & 6 in Level 2 with a common (0.7 by default) transition. To change this default transition probability, set the function argument 'trans_prob' to your preferred value.

reward Reward after Level 2 (0 or 1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

206 ts_par4

Contributors: Harhim Park <<hrp><hrpark12@gmail.com>></hr>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"ts_par4").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Daw, N. D., Gershman, S. J., Seymour, B., Ben Seymour, Dayan, P., & Dolan, R. J. (2011). Model-Based Influences on Humans' Choices and Striatal Prediction Errors. Neuron, 69(6), 1204-1215. https://doi.org/10.1016/j.neuron.2011.02.027

Daw, N. D., Gershman, S. J., Seymour, B., Ben Seymour, Dayan, P., & Dolan, R. J. (2011). Model-Based Influences on Humans' Choices and Striatal Prediction Errors. Neuron, 69(6), 1204-1215. https://doi.org/10.1016/j.neuron.2011.02.027

Wunderlich, K., Smittenaar, P., & Dolan, R. J. (2012). Dopamine enhances model-based over model-free choice behavior. Neuron, 75(3), 418-424.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- ts_par4(
    data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Run the model with example data
output <- ts_par4(
    data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)</pre>
```

ts_par6 207

```
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

ts_par6

Hybrid Model, with 6 parameters

Description

Hierarchical Bayesian Modeling of the Two-Step Task using Hybrid Model, with 6 parameters. It has the following parameters: a1 (learning rate in stage 1), beta1 (inverse temperature in stage 1), a2 (learning rate in stage 2), beta2 (inverse temperature in stage 2), pi (perseverance), w (model-based weight).

- Task: Two-Step Task (Daw et al., 2011)
- Model: Hybrid Model, with 6 parameters (Daw et al., 2011)

Usage

```
ts_par6(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
 nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
 modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
 max_treedepth = 10,
)
```

Arguments

data

Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "sub-jID", "level1_choice", "level2_choice", "reward". See **Details** below for more information.

niter

Number of iterations, including warm-up. Defaults to 4000.

208 ts_par6

nchain Num ncore Num nthin Eve	mber of iterations used for warm-up only. Defaults to 1000. mber of Markov chains to run. Defaults to 4. mber of CPUs to be used for running. Defaults to 1. ery i == nthin sample will be used to generate the posterior distribution. Faults to 1. A higher number can be used when auto-correlation within the EMC sampling is high. arracter value specifying how the initial values should be generated. Possible ions are "vb" (default), "fixed", "random", or your own initial values. arracter value specifying how to summarize individual parameters. Current ions are: "mean", "median", or "mode".
ncore Num nthin Eve Def	mber of CPUs to be used for running. Defaults to 1. Extry i == nthin sample will be used to generate the posterior distribution. Faults to 1. A higher number can be used when auto-correlation within the EMC sampling is high. Extracter value specifying how the initial values should be generated. Possible ions are "vb" (default), "fixed", "random", or your own initial values. Extracter value specifying how to summarize individual parameters. Current
nthin Eve Def	ery i == nthin sample will be used to generate the posterior distribution. Faults to 1. A higher number can be used when auto-correlation within the EMC sampling is high. Arracter value specifying how the initial values should be generated. Possible ions are "vb" (default), "fixed", "random", or your own initial values. Arracter value specifying how to summarize individual parameters. Current
Def	Caults to 1. A higher number can be used when auto-correlation within the CMC sampling is high. Arracter value specifying how the initial values should be generated. Possible ions are "vb" (default), "fixed", "random", or your own initial values. Arracter value specifying how to summarize individual parameters. Current
	ions are "vb" (default), "fixed", "random", or your own initial values. aracter value specifying how to summarize individual parameters. Current
_	ether to export model-based regressors (TRUE or FALSE). Not available for model.
	e variational inference to approximately draw from a posterior distribution. Faults to FALSE.
incr	lude trial-level posterior predictive simulations in model output (may greatly rease file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred_step1", pred_step2"
	ating point value representing the target acceptance probability of a new samin the MCMC chain. Must be between 0 and 1. See Details below.
	eger value specifying the size of each leapfrog step that the MCMC sampler take on each new iteration. See Details below.
	eger value specifying how many leapfrog steps the MCMC sampler can take each new iteration. See Details below.
For	this model, it's possible to set model-specific argument(s) as follows:
trai	ns_prob Common state transition probability from Stage (Level) 1 to Stage

Details

This section describes some of the function arguments in greater detail.

(Level) 2. Defaults to 0.7.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Two-Step Task, there should be 4 columns of data with the labels "subjID", "level1_choice", "level2_choice", "reward". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

level1_choice Choice made for Level (Stage) 1 (1: stimulus 1, 2: stimulus 2).

level2_choice Choice made for Level (Stage) 2 (1: stimulus 3, 2: stimulus 4, 3: stimulus 5, 4: stimulus 6).

Note that, in our notation, choosing stimulus 1 in Level 1 leads to stimulus 3 & 4 in Level 2 with a common (0.7 by default) transition. Similarly, choosing stimulus 2 in Level 1 leads to stimulus 5 & 6 in Level 2 with a common (0.7 by default) transition. To change this default transition probability, set the function argument 'trans_prob' to your preferred value.

ts_par6 209

reward Reward after Level 2 (0 or 1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Harhim Park <<hrpark12@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"ts_par6").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

210 ts_par7

References

Daw, N. D., Gershman, S. J., Seymour, B., Ben Seymour, Dayan, P., & Dolan, R. J. (2011). Model-Based Influences on Humans' Choices and Striatal Prediction Errors. Neuron, 69(6), 1204-1215. https://doi.org/10.1016/j.neuron.2011.02.027

Daw, N. D., Gershman, S. J., Seymour, B., Ben Seymour, Dayan, P., & Dolan, R. J. (2011). Model-Based Influences on Humans' Choices and Striatal Prediction Errors. Neuron, 69(6), 1204-1215. https://doi.org/10.1016/j.neuron.2011.02.027

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- ts_par6(</pre>
 data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- ts_par6(
 data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

ts_par7

Hybrid Model, with 7 parameters (original model)

Description

Hierarchical Bayesian Modeling of the Two-Step Task using Hybrid Model, with 7 parameters (original model). It has the following parameters: a1 (learning rate in stage 1), beta1 (inverse temperature in stage 1), a2 (learning rate in stage 2), beta2 (inverse temperature in stage 2), pi (perseverance), w (model-based weight), lambda (eligibility trace).

- Task: Two-Step Task (Daw et al., 2011)
- Model: Hybrid Model, with 7 parameters (original model) (Daw et al., 2011)

ts_par7 211

Usage

```
ts_par7(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
 modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
 max_treedepth = 10,
)
```

Arguments

data	Data to be modeled. It should be given as a data frame object, a filepath for a
	tab-seperated txt file, "example" to use example data, or "choose" to choose
	data with an interactive window. Columns in the dataset must include: "sub-
	TO 1 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

jID", "level1_choice", "level2_choice", "reward". See **Details** below for more

information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.

Defaults to 1. A higher number can be used when auto-correlation within the

MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible

options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current

options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for

this model.

vb Use variational inference to approximately draw from a posterior distribution.

Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly

increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred_step1",

"y_pred_step2"

212 ts_par7

adapt_delta Floating point value representing the target acceptance probability of a new sam-

ple in the MCMC chain. Must be between 0 and 1. See **Details** below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler

can take on each new iteration. See Details below.

max_treedepth
Integer value specifying how many leapfrog steps the MCMC sampler can take

on each new iteration. See Details below.

.. For this model, it's possible to set **model-specific argument(s)** as follows:

trans_prob Common state transition probability from Stage (Level) 1 to Stage (Level) 2. Defaults to 0.7.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Two-Step Task, there should be 4 columns of data with the labels "subjID", "level1_choice", "level2_choice", "reward". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

level1_choice Choice made for Level (Stage) 1 (1: stimulus 1, 2: stimulus 2).

level2_choice Choice made for Level (Stage) 2 (1: stimulus 3, 2: stimulus 4, 3: stimulus 5, 4: stimulus 6).

Note that, in our notation, choosing stimulus 1 in Level 1 leads to stimulus 3 & 4 in Level 2 with a common (0.7 by default) transition. Similarly, choosing stimulus 2 in Level 1 leads to stimulus 5 & 6 in Level 2 with a common (0.7 by default) transition. To change this default transition probability, set the function argument 'trans_prob' to your preferred value.

reward Reward after Level 2 (0 or 1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

ts_par7 213

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Harhim Park <<hrp>ark12@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"ts_par7").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Daw, N. D., Gershman, S. J., Seymour, B., Ben Seymour, Dayan, P., & Dolan, R. J. (2011). Model-Based Influences on Humans' Choices and Striatal Prediction Errors. Neuron, 69(6), 1204-1215. https://doi.org/10.1016/j.neuron.2011.02.027

Daw, N. D., Gershman, S. J., Seymour, B., Ben Seymour, Dayan, P., & Dolan, R. J. (2011). Model-Based Influences on Humans' Choices and Striatal Prediction Errors. Neuron, 69(6), 1204-1215. https://doi.org/10.1016/j.neuron.2011.02.027

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- ts_par7(
   data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data</pre>
```

214 ug_bayes

```
output <- ts_par7(
   data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

# Show the WAIC and LOOIC model fit estimates
printFit(output)

## End(Not run)</pre>
```

ug_bayes

Ideal Observer Model

Description

Hierarchical Bayesian Modeling of the Norm-Training Ultimatum Game using Ideal Observer Model. It has the following parameters: alpha (envy), beta (guilt), tau (inverse temperature).

- Task: Norm-Training Ultimatum Game
- Model: Ideal Observer Model (Xiang et al., 2013)

Usage

```
ug_bayes(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
  modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
 max\_treedepth = 10,
)
```

ug_bayes 215

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a
	tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "offer", "accept". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.
nthin	Every i == nthin sample will be used to generate the posterior distribution. Defaults to 1. A higher number can be used when auto-correlation within the MCMC sampling is high.
inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Norm-Training Ultimatum Game, there should be 3 columns of data with the labels "sub-jID", "offer", "accept". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

offer Floating point value representing the offer made in that trial (e.g. 4, 10, 11).

216 ug_bayes

accept 1 or 0, indicating whether the offer was accepted in that trial (where accepted == 1, rejected == 0).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"ug_bayes").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Xiang, T., Lohrenz, T., & Montague, P. R. (2013). Computational Substrates of Norms and Their Violations during Social Exchange. Journal of Neuroscience, 33(3), 1099-1108. https://doi.org/10.1523/JNEUROSCI.1642-12.2013

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- ug_bayes(</pre>
 data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- ug_bayes(</pre>
 data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

ug_delta

Rescorla-Wagner (Delta) Model

Description

Hierarchical Bayesian Modeling of the Norm-Training Ultimatum Game using Rescorla-Wagner (Delta) Model. It has the following parameters: alpha (envy), tau (inverse temperature), ep (norm adaptation rate).

- Task: Norm-Training Ultimatum Game
- Model: Rescorla-Wagner (Delta) Model (Gu et al., 2015)

Usage

```
ug_delta(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
```

```
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...
)
```

Arguments

data	Data to be modeled. It should be given as a data.frame object, a filepath for a tab-seperated txt file, "example" to use example data, or "choose" to choose data with an interactive window. Columns in the dataset must include: "subjID", "offer", "accept". See Details below for more information.
niter	Number of iterations, including warm-up. Defaults to 4000.
nwarmup	Number of iterations used for warm-up only. Defaults to 1000.
nchain	Number of Markov chains to run. Defaults to 4.
ncore	Number of CPUs to be used for running. Defaults to 1.

Number of CPUs to be used for running. Defaults to 1. Every i == nthin sample will be used to generate the posterior distribution.

nthin Every i == nthin sample will be used to generate the posterior distribution.

Defaults to 1. A higher number can be used when auto-correlation within the

MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible

options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current

options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for

this model.

vb Use variational inference to approximately draw from a posterior distribution.

Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly

increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-

ple in the MCMC chain. Must be between 0 and 1. See **Details** below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler

can take on each new iteration. See Details below.

on each new iteration. See Details below.

For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Norm-Training Ultimatum Game, there should be 3 columns of data with the labels "sub-jID", "offer", "accept". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

offer Floating point value representing the offer made in that trial (e.g. 4, 10, 11).

accept 1 or 0, indicating whether the offer was accepted in that trial (where accepted == 1, rejected == 0).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"ug_delta").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Gu, X., Wang, X., Hula, A., Wang, S., Xu, S., Lohrenz, T. M., et al. (2015). Necessary, Yet Dissociable Contributions of the Insular and Ventromedial Prefrontal Cortices to Norm Adaptation: Computational and Lesion Evidence in Humans. Journal of Neuroscience, 35(2), 467-473. https://doi.org/10.1523/JNEUROSCI.2906-14.2015

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- ug_delta(</pre>
 data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Run the model with example data
output <- ug_delta(</pre>
 data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)
# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")
# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)
# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)
# Show the WAIC and LOOIC model fit estimates
printFit(output)
## End(Not run)
```

wcs_sql

Sequential Learning Model

Description

Hierarchical Bayesian Modeling of the Wisconsin Card Sorting Task using Sequential Learning Model. It has the following parameters: r (reward sensitivity), p (punishment sensitivity), d (decision consistency or inverse temperature).

- Task: Wisconsin Card Sorting Task
- Model: Sequential Learning Model (Bishara et al., 2010)

Usage

```
wcs_sql(
  data = NULL,
  niter = 4000,
  nwarmup = 1000,
  nchain = 4,
  ncore = 1,
  nthin = 1,
  inits = "vb",
  indPars = "mean",
 modelRegressor = FALSE,
  vb = FALSE,
  inc_postpred = FALSE,
  adapt_delta = 0.95,
  stepsize = 1,
  max_treedepth = 10,
)
```

Arguments

tab-seperated txt file, "example" to use example data with an interactive window. Columns in the d"choice", "outcome". See Details below for more	dataset must include: "subjID",
niter Number of iterations, including warm-up. Defaul	lts to 4000.
nwarmup Number of iterations used for warm-up only. Def	faults to 1000.
nchain Number of Markov chains to run. Defaults to 4.	
ncore Number of CPUs to be used for running. Defaults	s to 1.
nthin Every i == nthin sample will be used to gener Defaults to 1. A higher number can be used wh MCMC sampling is high.	-

inits	Character value specifying how the initial values should be generated. Possible options are "vb" (default), "fixed", "random", or your own initial values.
indPars	Character value specifying how to summarize individual parameters. Current options are: "mean", "median", or "mode".
modelRegressor	Whether to export model-based regressors (TRUE or FALSE). Not available for this model.
vb	Use variational inference to approximately draw from a posterior distribution. Defaults to FALSE.
inc_postpred	Include trial-level posterior predictive simulations in model output (may greatly increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"
adapt_delta	Floating point value representing the target acceptance probability of a new sample in the MCMC chain. Must be between 0 and 1. See Details below.
stepsize	Integer value specifying the size of each leapfrog step that the MCMC sampler can take on each new iteration. See Details below.
max_treedepth	Integer value specifying how many leapfrog steps the MCMC sampler can take on each new iteration. See Details below.
	For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for the current analysis. The file should be a **tab-delimited** text file, whose rows represent trial-by-trial observations and columns represent variables.

For the Wisconsin Card Sorting Task, there should be 3 columns of data with the labels "subjID", "choice", "outcome". It is not necessary for the columns to be in this particular order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value indicating which deck was chosen on that trial: 1, 2, 3, or 4.

outcome 1 or 0, indicating the outcome of that trial: correct == 1, wrong == 0.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but only the data within the column names listed above will be used during the modeling. As long as the necessary columns mentioned above are present and labeled correctly, there is no need to remove other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument can be set to a high number in order to curb the effects that initial values have on the resulting posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences) should be used to draw samples from the posterior distribution. Since the posteriors are generated

from a sampling process, it is good practice to run multiple chains to ensure that a reasonably representative posterior is attained. When the sampling is complete, it is possible to check the multiple chains for convergence by running the following line of code: plot(output, type = "trace"). The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1, meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that give the user more control over Stan's MCMC sampler. It is recommended that only advanced users change the default values, as alterations can profoundly change the sampler's behavior. Refer to 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman & Gelman, 2014, Journal of Machine Learning Research)' for more information on the sampler control parameters. One can also refer to 'Section 34.2. HMC Algorithm Parameters' of the Stan User's Guide and Reference Manual, or to the help page for stan for a less technical description of these arguments.

Contributors: Dayeong Min <<mindy2801@snu.ac.kr>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"wcs_sql").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Bishara, A. J., Kruschke, J. K., Stout, J. C., Bechara, A., McCabe, D. P., & Busemeyer, J. R. (2010). Sequential learning models for the Wisconsin card sort task: Assessing processes in substance dependent individuals. Journal of Mathematical Psychology, 54(1), 5-13.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/ CCSL/hBayesDM

Examples

```
## Not run:
# Run the model with a given data.frame as df
output <- wcs_sql(
   data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)</pre>
```

```
# Run the model with example data
output <- wcs_sql(
   data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

# Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

# Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

# Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

# Show the WAIC and LOOIC model fit estimates
printFit(output)

## End(Not run)</pre>
```

Index

alt_delta,4	HDIofMCMC, 118
alt_gamma, 7	Historiaci, 110
	igt_orl, 119
bandit2arm_delta, 11	igt_pvl_decay, 122
bandit4arm2_kalman_filter, 14	igt_pvl_delta, 126
bandit4arm_2par_lapse, 17	igt_vpp, 129
bandit4arm_4par, 21	3 – 117
bandit4arm_lapse, 24	multiplot, 133
bandit4arm_lapse_decay, 27	•
bandit4arm_singleA_lapse, 31	peer_ocu, 133
banditNarm_2par_lapse, 34	plotDist, 137
banditNarm_4par, 38	plotHDI, 138
banditNarm_delta, 41	plotInd, 139
banditNarm_kalman_filter,45	printFit, 140
banditNarm_lapse, 48	prl_ewa, 141
banditNarm_lapse_decay, 52	prl_fictitious, 144
banditNarm_singleA_lapse, 55	prl_fictitious_multipleB, 147
bart_ewmv, 59	<pre>prl_fictitious_rp, 151</pre>
bart_par4, 62	<pre>prl_fictitious_rp_woa, 154</pre>
	prl_fictitious_woa, 158
cgt_cm, 65	prl_rp, 161
choiceRT_ddm, 69	prl_rp_multipleB, 164
<pre>choiceRT_ddm_single, 72</pre>	pst_gainloss_Q, 179
cra_exp, 76	pst_Q, 182
cra_linear,79	pstRT_ddm, 168
	pstRT_rlddm1, 171
dbdm_prob_weight, 83	pstRT_rlddm6, 175
dd_cs, 86	
dd_cs_single, 90	ra_noLA, 186
dd_exp, 93	ra_noRA, 189
dd_hyperbolic,97	ra_prospect, 192
dd_hyperbolic_single, 100	rdt_happiness, 196
	rhat, 199
estimate_mode, 103	
extract_ic, 104	stan, 6, 9, 13, 16, 20, 23, 26, 30, 33, 36, 40,
	43, 47, 50, 54, 57, 61, 64, 68, 71, 74,
gng_m1, 105	78, 81, 85, 89, 92, 95, 99, 102, 107,
gng_m2, 108	110, 114, 117, 121, 124, 128, 131,
gng_m3, 111	135, 143, 146, 150, 153, 157, 160,
gng_m4, 115	163, 167, 170, 174, 178, 181, 185,

226 INDEX

```
188, 191, 195, 198, 202, 205, 209,
         213, 216, 219, 223
stanfit, 6, 10, 13, 17, 20, 23, 26, 30, 33, 37,
         40, 44, 47, 51, 54, 58, 61, 64, 68, 71,
         75, 78, 82, 85, 89, 92, 96, 99, 103,
         107, 110, 114, 117, 121, 125, 128,
         132, 136, 143, 146, 150, 153, 157,
         160, 164, 167, 170, 174, 178, 181,
         185, 188, 192, 195, 199, 202, 206,
         209, 213, 216, 220, 223
task2AFC_sdt, 200
ts_par4, 203
ts_par6, 207
ts_par7, 210
ug_bayes, 214
ug_delta, 217
wcs_sq1, 221
```